16,675 research outputs found

    First-Principles Study of Electronic Structure in α\alpha-(BEDT-TTF)2_2I3_3 at Ambient Pressure and with Uniaxial Strain

    Full text link
    Within the framework of the density functional theory, we calculate the electronic structure of α\alpha-(BEDT-TTF)2_2I3_3 at 8K and room temperature at ambient pressure and with uniaxial strain along the aa- and bb-axes. We confirm the existence of anisotropic Dirac cone dispersion near the chemical potential. We also extract the orthogonal tight-binding parameters to analyze physical properties. An investigation of the electronic structure near the chemical potential clarifies that effects of uniaxial strain along the a-axis is different from that along the b-axis. The carrier densities show T2T^2 dependence at low temperatures, which may explain the experimental findings not only qualitatively but also quantitatively.Comment: 10 pages, 7 figure

    Self-tuning of threshold for a two-state system

    Get PDF

    Charge ordering in theta-(BEDT-TTF)_2 X materials

    Full text link
    We investigate theoretically charge ordered states on the anisotropic triangular lattice characteristic of the theta-(BEDT-TTF)_2 X materials. Using exact diagonalization studies, we establish that the charge order (CO) pattern corresponds to a ``horizontal'' stripe structure, with ...1100... CO along the two directions with larger electron hopping (p-directions), and ...1010... CO along the third direction (c-direction). The CO is accompanied by co-operative bond dimerizations along all three directions in the highest spin state. In the lowest spin state bonds along the p-directions are tetramerized. Our theory explains the occurence of a charge-induced high temperature transition as well as a spin gap transition at lower temperature.Comment: 4 pages, 4 eps figures, uses jpsj2.cl

    Growth Dynamics of Photoinduced Domains in Two-Dimensional Charge-Ordered Conductors Depending on Stabilization Mechanisms

    Full text link
    Photoinduced melting of horizontal-stripe charge orders in quasi-two-dimensional organic conductors \theta-(BEDT-TTF)2RbZn(SCN)4[BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene] and \alpha-(BEDT-TTF)2I3 is investigated theoretically. By numerically solving the time-dependent Schr\"odinger equation, we study the photoinduced dynamics in extended Peierls-Hubbard models on anisotropic triangular lattices within the Hartree-Fock approximation. The melting of the charge order needs more energy for \theta-(BEDT-TTF)2RbZn(SCN)4 than for \alpha-(BEDT-TTF)2I3, which is a consequence of the larger stabilization energy in \theta-(BEDT-TTF)2RbZn(SCN)4. After local photoexcitation in the charge ordered states, the growth of a photoinduced domain shows anisotropy. In \theta-(BEDT-TTF)2RbZn(SCN)4, the domain hardly expands to the direction perpendicular to the horizontal-stripes. This is because all the molecules on the hole-rich stripe are rotated in one direction and those on the hole-poor stripe in the other direction. They modulate horizontally connected transfer integrals homogeneously, stabilizing the charge order stripe by stripe. In \alpha-(BEDT-TTF)2I3, lattice distortions locally stabilize the charge order so that it is easily weakened by local photoexcitation. The photoinduced domain indeed expands in the plane. These results are consistent with recent observation by femtosecond reflection spectroscopy.Comment: 9 pages, 8 figures, to appear in J. Phys. Soc. Jpn. Vol. 79 (2010) No.

    Charge Ordering in Organic ET Compounds

    Full text link
    The charge ordering phenomena in quasi two-dimensional 1/4-filled organic compounds (ET)_2X (ET=BEDT-TTF) are investigated theoretically for the θ\theta and α\alpha-type structures, based on the Hartree approximation for the extended Hubbard models with both on-site and intersite Coulomb interactions. It is found that charge ordered states of stripe-type are stabilized for the relevant values of Coulomb energies, while the spatial pattern of the stripes sensitively depends on the anisotropy of the models. By comparing the results of calculations with the experimental facts, where the effects of quantum fluctuation is incorporated by mapping the stripe-type charge ordered states to the S=1/2 Heisenberg Hamiltonians, the actual charge patterns in the insulating phases of θ\theta-(ET)_2MM'(SCN)_4 and α\alpha-(ET)_2I_3 are deduced. Furthermore, to obtain a unified view among the θ\theta, α\alpha and κ\kappa-(ET)_2X families, the stability of the charge ordered state in competition with the dimeric antiferromagnetic state viewed as the Mott insulating state, which is typically realized in κ\kappa-type compounds, and with the paramagnetic metallic state, is also pursued by extracting essential parameters.Comment: 35 pages, 27 figures, submitted to J. Phys. Soc. Jp

    Finite-temperature phase transitions in quasi-one-dimensional molecular conductors

    Full text link
    Phase transitions in 1/4-filled quasi-one-dimensional molecular conductors are studied theoretically on the basis of extended Hubbard chains including electron-lattice interactions coupled by interchain Coulomb repulsion. We apply the numerical quantum transfer-matrix method to an effective one-dimensional model, treating the interchain term within mean-field approximation. Finite-temperature properties are investigated for the charge ordering, the "dimer Mott" transition (bond dimerization), and the spin-Peierls transition (bond tetramerization). A coexistent state of charge order and bond dimerization exhibiting dielectricity is predicted in a certain parameter range, even when intrinsic dimerization is absent.Comment: to be published in J. Phys. Soc. Jpn., Vol. 76 (2007) No. 1 (5 pages, 4 figures); typo correcte

    Imaging Hepatocellular Carcinoma With 68Ga-Citrate PET: First Clinical Experience.

    Get PDF
    While cross-sectional imaging with computed tomography (CT) and magnetic resonance imaging is the primary method for diagnosing hepatocellular carcinoma (HCC), they provide little biological insight into this molecularly heterogeneous disease. Nuclear imaging tools that can detect molecular subsets of tumors could greatly improve diagnosis and management of HCC. To this end, we conducted a patient study to determine whether HCC can be resolved using 68Ga-citrate positron emission tomography (PET). One patient with recurrent HCC was injected with 300 MBq of 68Ga-citrate and imaged with PET/CT 249 minutes post injection. Four (28%) of 14 hepatic lesions were avid for 68Ga-citrate. One extrahepatic lesion was not PET avid. The average maximum standardized uptake value (SUVmax) for the lesions was 7.2 (range: 6.2-8.4), while the SUVmax of the normal liver parenchyma was 4.7 and blood pool was 5.7. The avid lesions were not significantly larger than the quiescent lesions, and a prior contrast CT showed uniform enhancement among the lesions, suggesting that tumor signals are due to specific binding of the radiotracer to the transferrin receptor, rather than enhanced vascularity in the tumor microenvironment. Further studies are required in a larger patient cohort to verify the molecular basis of radiotracer uptake and the clinical utility of this tool

    Finite-Temperature Properties across the Charge Ordering Transition -- Combined Bosonization, Renormalization Group, and Numerical Methods

    Full text link
    We theoretically describe the charge ordering (CO) metal-insulator transition based on a quasi-one-dimensional extended Hubbard model, and investigate the finite temperature (TT) properties across the transition temperature, TCOT_{\rm CO}. In order to calculate TT dependence of physical quantities such as the spin susceptibility and the electrical resistivity, both above and below TCOT_{\rm CO}, a theoretical scheme is developed which combines analytical methods with numerical calculations. We take advantage of the renormalization group equations derived from the effective bosonized Hamiltonian, where Lanczos exact diagonalization data are chosen as initial parameters, while the CO order parameter at finite-TT is determined by quantum Monte Carlo simulations. The results show that the spin susceptibility does not show a steep singularity at TCOT_{\rm CO}, and it slightly increases compared to the case without CO because of the suppression of the spin velocity. In contrast, the resistivity exhibits a sudden increase at TCOT_{\rm CO}, below which a characteristic TT dependence is observed. We also compare our results with experiments on molecular conductors as well as transition metal oxides showing CO.Comment: 9 pages, 8 figure
    corecore