19,470 research outputs found

    A New Statistic for Analyzing Baryon Acoustic Oscillations

    Full text link
    We introduce a new statistic omega_l for measuring and analyzing large-scale structure and particularly the baryon acoustic oscillations. omega_l is a band-filtered, configuration space statistic that is easily implemented and has advantages over the traditional power spectrum and correlation function estimators. Unlike these estimators, omega_l can localize most of the acoustic information into a single dip at the acoustic scale while also avoiding sensitivity to the poorly constrained large scale power (i.e., the integral constraint) through the use of a localized and compensated filter. It is also sensitive to anisotropic clustering through pair counting and does not require any binning. We measure the shift in the acoustic peak due to nonlinear effects using the monopole omega_0 derived from subsampled dark matter catalogues as well as from mock galaxy catalogues created via halo occupation distribution (HOD) modeling. All of these are drawn from 44 realizations of 1024^3 particle dark matter simulations in a 1h^{-1}Gpc box at z=1. We compare these shifts with those obtained from the power spectrum and conclude that the results agree. This indicates that any distance measurements obtained from omega_0 and P(k) will be consistent with each other. We also show that it is possible to extract the same amount of acoustic information using either omega_0 or P(k) from equal volume surveys.Comment: 12 pages, 7 figures. ApJ accepted. Edit: Now updated with final accepted versio

    Assembly and force measurement with SPM-like probes in holographic optical tweezers

    Get PDF
    We report a high fidelity tomographic reconstruction of the quantum state of photon pairs generated by parametric down-conversion with orbital angular momentum (OAM) entanglement. Our tomography method allows us to estimate an upper and lower bound for the entanglement between the down-converted photons. We investigate the two-dimensional state subspace defined by the OAM states ±ℓ and superpositions thereof, with ℓ=1, 2, ..., 30. We find that the reconstructed density matrix, even for OAMs up to around ℓ=20, is close to that of a maximally entangled Bell state with a fidelity in the range between F=0.979 and F=0.814. This demonstrates that, although the single count-rate diminishes with increasing ℓ, entanglement persists in a large dimensional state space

    The Dropping of In-Medium Hadron Mass in Holographic QCD

    Get PDF
    We study the baryon density dependence of the vector meson spectrum using the D4/D6 system together with the compact D4 baryon vertex. We find that the vector meson mass decreases almost linearly in density at low density for small quark mass, but saturates to a finite non-zero value for large density. We also compute the density dependence of the η\eta\prime mass and the η\eta\prime velocity. We find that in medium, our model is consistent with the GMOR relation up to a few times the normal nuclear density. We compare our hQCD predictions with predictions made based on hidden local gauge theory that is constructed to model QCD.Comment: 20 pages, 7 figure

    Tetra­kis(acetonitrile-κN)lithium hexa­fluoridophosphate acetonitrile monosolvate

    Get PDF
    In the title compound, [Li(CH3CN)4]PF6·CH3CN, the asymmetric unit consists of three independent tetra­hedral [Li(CH3CN)4]+ cations, three uncoordinated PF6 − anions and three uncoordinated CH3CN solvent mol­ecules. The three anions are disordered over two sites through a rotation along one of the F—P—F axes. The relative occupancies of the two sites for the F atoms are 0.643 (16):0.357 (16), 0.677 (10):0.323 (10) and 0.723 (13):0.277 (13). The crystal used was a racemic twin, with approximately equal twin components
    corecore