3,566 research outputs found

    Periodic shedding of vortex dipoles from a moving penetrable obstacle in a Bose-Einstein condensate

    Full text link
    We investigate vortex shedding from a moving penetrable obstacle in a highly oblate Bose-Einstein condensate. The penetrable obstacle is formed by a repulsive Gaussian laser beam that has the potential barrier height lower than the chemical potential of the condensate. The moving obstacle periodically generates vortex dipoles and the vortex shedding frequency fvf_v linearly increases with the obstacle velocity vv as fv=a(vโˆ’vc)f_v=a(v-v_c), where vcv_c is a critical velocity. Based on periodic shedding behavior, we demonstrate deterministic generation of a single vortex dipole by applying a short linear sweep of a laser beam. This method will allow further controlled vortex experiments such as dipole-dipole collisions.Comment: 6 pages, 7 figure

    Mott transition with Holographic Spectral function

    Full text link
    We show that the Mott transition can be realized in a holographic model of a fermion with bulk mass, mm, and a dipole interaction of coupling strength pp. The phase diagram contains gapless, pseudo-gap and gapped phases and the first one can be further divided into four sub-classes. We compare the spectral densities of our holographic model with the Dynamical Mean Field Theory (DMFT) results for Hubbard model as well as the experimental data of Vanadium Oxide materials. Interestingly, single-site and cluster DMFT results of Hubbard model share some similarities with the holographic model of different parameters, although the spectral functions are quite different due to the asymmetry in the holography part. The theory can fit the X-ray absorption spectrum (XAS) data quite well, but once the theory parameters are fixed with the former it can fit the photoelectric emission spectrum (PES) data only if we symmetrize the spectral function.Comment: 22 pages, 21 figures, v2 symmetrization arguments are abandoned, the argument of Mott transition is still valid, but comparison with Hubbard model is modified. Title is change

    Critical Velocity for Vortex Shedding in a Bose-Einstein Condensate

    Full text link
    We present measurements of the critical velocity for vortex shedding in a highly oblate Bose-Einstein condensate with a moving repulsive Gaussian laser beam. As a function of the barrier height V0V_0, the critical velocity vcv_c shows a dip structure having a minimum at V0โ‰ˆฮผV_0 \approx \mu , where ฮผ\mu is the chemical potential of the condensate. At fixed V0โ‰ˆ7ฮผV_0\approx 7\mu, we observe that the ratio of vcv_c to the speed of sound csc_s monotonically increases for decreasing ฯƒ/ฮพ\sigma/\xi, where ฯƒ\sigma is the beam width and ฮพ\xi is the condensate healing length. The measured upper bound for vc/csv_c/c_s is about 0.4, which is in good agreement with theoretical predictions for a two-dimensional superflow past a circular cylinder. We explain our results with the density reduction effect of the soft boundary of the Gaussian obstacle, based on the local Landau criterion for superfluidity.Comment: 5 pages, 4 figure

    Relaxation of superfluid turbulence in highly oblate Bose-Einstein condensates

    Full text link
    We investigate thermal relaxation of superfluid turbulence in a highly oblate Bose-Einstein condensate. We generate turbulent flow in the condensate by sweeping the center region of the condensate with a repulsive optical potential. The turbulent condensate shows a spatially disordered distribution of quantized vortices and the vortex number of the condensate exhibits nonexponential decay behavior which we attribute to the vortex pair annihilation. The vortex-antivortex collisions in the condensate are identified with crescent-shaped, coalesced vortex cores. We observe that the nonexponential decay of the vortex number is quantitatively well described by a rate equation consisting of one-body and two-body decay terms. In our measurement, we find that the local two-body decay rate is closely proportional to T2/ฮผT^2/\mu, where TT is the temperature and ฮผ\mu is the chemical potential.Comment: 7 pages, 9 figure

    Observation of a Geometric Hall Effect in a Spinor Bose-Einstein Condensate with a Skyrmion Spin Texture

    Full text link
    For a spin-carrying particle moving in a spatially varying magnetic field, effective electromagnetic forces can arise due to the geometric phase associated with adiabatic spin rotation of the particle. We report the observation of a geometric Hall effect in a spinor Bose-Einstein condensate with a skyrmion spin texture. Under translational oscillations of the spin texture, the condensate resonantly develops a circular motion in a harmonic trap, demonstrating the existence of an effective Lorentz force. When the condensate circulates, quantized vortices are nucleated in the boundary region of the condensate and the vortex number increases over 100 without significant heating. We attribute the vortex nucleation to the shearing effect of the effective Lorentz force from the inhomogeneous effective magnetic field.Comment: 9 pages, 11 figure

    Optimum PSK Signal Mapping for Multi-Phase Binary-CDMA Systems

    Get PDF
    Although the CDMA system can efficiently support multiple users, may suffer from peak-to-average power ratio (PAPR) increases as the number of users increases. As a result, it needs highly linear power amplifiers with a large back off. Recently, a new CDMA scheme, called binary CDMA (B-CDMA), has been proposed to alleviate this problem by quantizing the envelope of multi-user CDMA signals into a small number of levels, while preserving the advantages of CDMA signaling [1]. The performance of B-CDMA system is mainly determined by the quantization and detection error. The quantization noise can be minimized using the Lloyd-max algorithm [2]. In this paper, the optimum PSK signal is designed to minimize the detection error in multi-phase B-CDMA systems. Finally, the analytic results are verified by computer simulatio

    ๋‹ค์ค‘ ์œ„์ƒ B-CDMA ์‹œ์Šคํ…œ์—์„œ ์ตœ์ ์˜ PSK ์‹ ํ˜ธ ๋งคํ•‘

    Get PDF
    Although CDMA system can efficiently support multiple users, it suffers from large peak-to-average power ratio (PAPR) as the number of users increases. It requires the use of a highly linear power amplifiers with a large back off. Recently, a new CDMA scheme, called binary CDMA (B-CDMA), has been proposed to alleviate this problem [1]. In B-CDMA systems, the envelope of multi-user CDMA signals is truncated into a small number of levels to reduce the PAPR. The performance of B-CDMA system is mainly limited by two types of noise; the truncation and decision error. The truncation noise can be minimized by Lloyd-max algorithm [2]. In this paper, the optimum PSK signal constellation is analytically designed in multi-phase B-CDMA to minimize the decision errors. Finally, the analytic results are verified by computer simulation

    EFFECTS OF MO, CR, AND V ADDITIONS ON TENSILE AND CHARPY IMPACT PROPERTIES OF API X80 PIPELINE STEELS

    Get PDF
    In this study, four API X80 pipeline steels were fabricated by varying Mo, Cr, and V additions, and their microstructures and crystallographic orientations were analyzed to investigate the effects of their alloying compositions on tensile properties and Charpy impact properties. Because additions of Mo and V promoted the formation of fine acicular ferrite (AF) and granular bainite (GB) while prohibiting the formation of coarse GB, they increased the strength and upper-shelf energy (USE) and decreased the energy transition temperature (ETT). The addition of Cr promoted the formation of coarse GB and hard secondary phases, thereby leading to an increased effective grain size, ETT, and strength, and a decreased USE. The addition of V resulted in a higher strength, a higher USE, a smaller effective grain size, and a lower ETT, because it promoted the formation of fine and homogeneous of AF and GB. The steel that contains 0.3 wt pct Mo and 0.06 wt pct V without Cr had the highest USE and the lowest ETT, because its microstructure was composed of fine AF and GB while its maintained excellent tensile properties.X1126sciescopu

    Statistical Trends in Family Medicine Journals

    Get PDF
    • โ€ฆ
    corecore