6 research outputs found
Role of multiple subband renormalization in the electronic transport of correlated oxide superlattices
Metallic behavior of band-insulator/ Mott-insulator interfaces was observed
in artificial perovskite superlattices such as in nanoscale SrTiO3/LaTiO3
multilayers. Applying a semiclassical perspective to the parallel electronic
transport we identify two major ingredients relevant for such systems: i) the
quantum confinement of the conduction electrons (superlattice modulation) leads
to a complex, quasi-two dimensional subband structure with both hole- and
electron-like Fermi surfaces. ii) strong electron-electron interaction requires
a substantial renormalization of the quasi-particle dispersion. We characterize
this renormalization by two sets of parameters, namely, the quasi-particle
weight and the induced particle-hole asymmetry of each partially filled
subband. In our study, the quasi-particle dispersion is calculated
self-consistently as function of microscopic parameters using the slave-boson
mean-field approximation introduced by Kotliar and Ruckenstein. We discuss the
consequences of strong local correlations on the normal-state free-carrier
response in the optical conductivity and on the thermoelectric effects.Comment: 11 pages, 4 figure
Domain wall conductivity in semiconducting hexagonal ferroelectric TbMnO3 thin films
Although enhanced conductivity of ferroelectric domain boundaries has been found in BiFeO3 and Pb(Zr,Ti)O3 films as well as hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric TbMnO3 thin films where the structure and polarization direction are strongly constrained along the c-axis. This result indicates that domain wall conductivity in ferroelectric rare-earth manganites is not limited to charged domain walls. We show that the observed conductivity in the TbMnO3 films is governed by a single conduction mechanism, namely, the back-to-back Schottky diodes tuned by the segregation of defects. © 2016 IOP Publishing Ltd1221sciescopu