106 research outputs found

    Diffusion Tensor Tractography Studies on Injured Anterior Cingulum Recovery Mechanisms: A Mini-Review

    Get PDF
    The cingulum, a major structure in the limbic system, contains the medial cholinergic pathway, which originates from the basalis nucleus of Meynert (Ch 4) in the basal forebrain. The cingulum is involved in various cognitive functions, including memory, attention, learning, motivation, emotion, and pain perception. In this mini-review, 10 studies reporting on recovery mechanisms of injured cinguli in patients with brain injury were reviewed. The recovery mechanisms of the injured anterior cinguli reported in those 10 studies are classified as follows: Mechanism 1, recovery via the normal pathway of the cingulum between the injured cingulum and Ch 4; mechanism 2, recovery through the neural tract between the injured cingulum and the brainstem cholinergic nuclei; mechanism 3, recovery via the lateral cholinergic pathway between the injured cingulum and the white matter of the temporo-occipital lobes; mechanism 4, recovery through the neural tract between the contralesional basal forebrain and the ipsilesional basal forebrain via the genu of the corpus callosum; and mechanism 5, recovery through the neural tract between the injured cingulum and Ch 4 via an aberrant pathway. Elucidation of the recovery mechanisms of injured anterior cinguli might be useful for neurorehabilitation of patients with anterior cingulum injuries. Diffusion tensor tractography appears to be useful in the detection of recovery mechanisms of injured anterior cinguli in patients with brain injury. However, studies on cingulum injury recovery mechanisms are still in the early stages because most of the above studies are case reports confined to a few brain pathologies. Therefore, further studies involving large numbers of subjects with various brain pathologies should be encouraged. In addition, studies on the influencing factors and clinical outcomes associated with each recovery mechanism are warranted

    The cortical activation pattern by a rehabilitation robotic hand: a functional NIRS study

    Get PDF
    Introduction: Clarification of the relationship between external stimuli and brain response has been an important topic in neuroscience and brain rehabilitation. In the current study, using functional near infrared spectroscopy (fNIRS), we attempted to investigate cortical activation patterns generated during execution of a rehabilitation robotic hand. Methods: Ten normal subjects were recruited for this study. Passive movements of the right fingers were performed using a rehabilitation robotic hand at a frequency of 0.5 Hz. We measured values of oxy-hemoglobin (HbO), deoxy-hemoglobin (HbR) and total-hemoglobin (HbT) in five regions of interest: the primary sensory-motor cortex (SM1), hand somatotopy of the contralateral SM1, supplementary motor area (SMA), premotor cortex (PMC), and prefrontal cortex (PFC). Results: HbO and HbT values indicated significant activation in the left SM1, left SMA, left PMC, and left PFC during execution of the rehabilitation robotic hand (uncorrected, p < 0.01). By contrast, HbR value indicated significant activation only in the hand somatotopic area of the left SM1 (uncorrected, p < 0.01). Conclusions: Our results appear to indicate that execution of the rehabilitation robotic hand could induce cortical activation. © 2014 Chang, Lee, Gu, Lee, Jin, Yeo, Seo and Jang.1

    Functional analyses of miRNA-146b-5p during myogenic proliferation and differentiation in chicken myoblasts

    Get PDF
    Background In the poultry and livestock industries, precise genetic information is crucial for improving economic traits. Thus, functional genomic studies help to generate faster, healthier, and more efficient animal production. Chicken myoblast cells, which are required for muscle development and regeneration, are particularly important because chicken growth is closely related to muscle mass. Results In this study, we induced expression of microRNA-146b-5p mediated by the piggyBac transposon system in primary chicken myoblast (pCM) cells. Subsequently, we analyzed and compared the proliferation and differentiation capacity and also examined the expression of related genes in regular pCM (rpCM) cells and pCM cells overexpressing miRNA-146b-5p (pCM-146b OE cells). pCM-146b OE cells showed increased proliferation and upregulated gene expression related to cell proliferation. In addition, next-generation sequencing analyses were performed to compare global gene expression patterns between rpCM cells and pCM-146b OE cells. We found that the higher proliferation in pCM-146b OE cells was the result of upregulation of gene sets related to the cell cycle. Moreover, miRNA-146b-5p overexpression had inhibitory effects on myotube differentiation in pCM cells. Conclusions Collectively these results demonstrate that miR-146b-5p is closely related to the proliferation and differentiation of chicken myogenic cells as a modulator of post-transcription.This work was carried out with the support of Cooperative Research Program for Agriculture Science & Technology Development (Project No.PJ01334801) Rural Development Administration, Republic of Korea. The funding bodies played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript

    The Effect of Environmental Enrichment on Glutathione-Mediated Xenobiotic Metabolism and Antioxidation in Normal Adult Mice

    Get PDF
    Olfactory bulb (OB) plays an important role in protecting against harmful substances via the secretion of antioxidant and detoxifying enzymes. Environmental enrichment (EE) is a common rehabilitation method and known to have beneficial effects in the central nervous system. However, the effects of EE in the OB still remain unclear. At 6 weeks of age, CD-1® (ICR) mice were assigned to standard cages or EE cages. After 2 months, we performed proteomic analysis. Forty-four up-regulated proteins were identified in EE mice compared to the control mice. Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes Pathway demonstrated that the upregulated proteins were mainly involved in metabolic pathways against xenobiotics. Among those upregulated proteins, 9 proteins, which participate in phase I or II of the xenobiotic metabolizing process and are known to be responsible for ROS detoxification, were validated by qRT-PCR. To explore the effect of ROS detoxification mediated by EE, glutathione activity was measured by an ELISA assay. The ratio of reduced glutathione to oxidized glutathione was significantly increased in EE mice. Based on a linear regression analysis, GSTM2 and UGT2A1 were found to be the most influential genes in ROS detoxification. For further analysis of neuroprotection, the level of iNOS and the ratio of Bax to Bcl-2 were significantly decreased in EE mice. While TUNEL+ cells were significantly decreased, Ki67+ cells were significantly increased in EE mice, implicating that EE creates an optimal state for xenobiotic metabolism and antioxidant activity. Taken together, our results suggested that EE protects olfactory layers via the upregulation of glutathione-related antioxidant and xenobiotic metabolizing enzymes, eventually lowering ROS-mediated inflammation and apoptosis and increasing neurogenesis. This study may provide an opportunity for a better understanding of the beneficial effects of EE in the OB

    Multimodal MRI-Based Triage for Acute Stroke Therapy: Challenges and Progress

    Get PDF
    Revascularization therapies have been established as the treatment mainstay for acute ischemic stroke. However, a substantial number of patients are either ineligible for revascularization therapy, or the treatment fails or is futile. At present, non-contrast computed tomography is the first-line neuroimaging modality for patients with acute stroke. The use of magnetic resonance imaging (MRI) to predict the response to early revascularization therapy and to identify patients for delayed treatment is desirable. MRI could provide information on stroke pathophysiologies, including the ischemic core, perfusion, collaterals, clot, and blood–brain barrier status. During the past 20 years, there have been significant advances in neuroimaging as well as in revascularization strategies for treating patients with acute ischemic stroke. In this review, we discuss the role of MRI and post-processing, including machine-learning techniques, and recent advances in MRI-based triage for revascularization therapies in acute ischemic stroke

    Humulus japonicus attenuates LPS-and scopolamine-induced cognitive impairment in mice

    Get PDF
    Background : Neuroinflammation plays an important role in cognitive decline and memory impairment in neurodegenerative disorders. Previously, we demonstrated that Humulus japonicus (HJ) has anti-inflammatory effects in rodent models of Alzheimer’s disease and Parkinson’s disease. The present study aimed to examine the protective potential of HJ extracts against lipopolysaccharide (LPS)-induced cognitive impairment and scopolamine-induced amnesia in mouse models. Cognitive improvement of mice was investigated by novel object recognition test. For analyzing effects on neuroinflammation, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR) assays were performed. Results : We found that the oral administration of HJ significantly improved cognitive dysfunction induced by LPS in a novel object recognition test. The LPS-induced activation of microglia was notably decreased by HJ treatment in the cortex and hippocampus. HJ administration with LPS also significantly increased the mRNA expression of interleukin (IL)-10 and decreased the mRNA expression of IL-12 in the parietal cortex of mice. The increased expression of LPS-induced complement C1q B chain (C1bq) and triggering receptor expressed on myeloid cells 2 (Trem2) genes was significantly suppressed by HJ treatment. In addition, HJ administration significantly improved novel object recognition in a scopolamine-induced amnesia mouse model. Conclusions : These findings revealed that HJ has a beneficial effect on cognitive impairment and neuroinflammation induced by systemic inflammation and on amnesia induced by scopolamine in mice.This study was supported by the KRIBB Research Initiative Program of the Republic of Korea (KGS1042221) and the Development of Platform Technology for Innovative Medical Measurements funded by Korea Research Institute of Standards and Science (KRISS-GP2022-2)
    corecore