27 research outputs found

    The effect of fermented buckwheat on producing L-carnitine enriched oyster mushroom

    Get PDF
    L-carnitine is biological compound which serves intake of long chain fatty acids into mitochondria. In market, L-carnitine is considered as nutritious supplements for weight-loss. L-carnitine is synthesized in human organ, but most of L-carnitine which human intakes are originated from meat based foods. Oyster mushroom (Pleurotus ostreatus), the second popular edible mushroom in the world, is the main source of L-carnitine after meat and pork. Recently, there were many efforts to study designer foods of which functional ingredients were increased. However most of studies were focused on dairy products. In this study, the fermented buckwheat by Rhizopus oligosporus that contained high L-carnitine contents were used to cultivate oyster mushroom. L-carnitine contents in oyster mushroom were quantified by LC-ESI-MS. Mushroom grown on buckwheat medium had 3.17 to 23.88% higher L-carnitine concentration than normal medium. The mushroom size was increased when 20% (w/w) of buckwheat was added to basal medium. The lightness of mushroom pileus (L*) significantly increased among all the treatments. These results demonstrate that buckwheat and fermented buckwheat is novel substrates to produce L-carnitine enriched functional mushroom.OAIID:RECH_ACHV_DSTSH_NO:A201702463RECH_ACHV_FG:RR00200003ADJUST_YN:EMP_ID:A079459CITE_RATE:FILENAME:태경.pdfDEPT_NM:국제농업기술학과EMAIL:[email protected]_YN:FILEURL:https://srnd.snu.ac.kr/eXrepEIR/fws/file/34dfad8a-5bc9-41cd-8160-c7846937fa22/linkCONFIRM:

    Hematopoietic Differentiation of Embryoid Bodies Derived from the Human Embryonic Stem Cell Line SNUhES3 in Co-culture with Human Bone Marrow Stromal Cells

    Get PDF
    Human embryonic stem (ES) cells can be induced to differentiate into hematopoietic precursor cells via two methods: the formation of embryoid bodies (EBs) and co-culture with mouse bone marrow (BM) stromal cells. In this study, the above two methods have been combined by co-culture of human ES-cell-derived EBs with human BM stromal cells. The efficacy of this method was compared with that using EB formation alone. The undifferentiated human ES cell line SNUhES3 was allowed to form EBs for two days, then EBs were induced to differentiate in the presence of a different serum concentration (EB and EB/high FBS group), or co-cultured with human BM stromal cells (EB/BM co-culture group). Flow cytometry and hematopoietic colony-forming assays were used to assess hematopoietic differentiation in the three groups. While no significant increase of CD34+/CD45- or CD34+/CD38- cells was noted in the three groups on days 3 and 5, the percentage of CD34+/CD45- cells and CD34+/CD38- cells was significantly higher in the EB/BM co-culture group than in the EB and EB/high FBS groups on day 10. The number of colony-forming cells (CFCs) was increased in the EB/BM co-culture group on days 7 and 10, implying a possible role for human BM stromal cells in supporting hematopoietic differentiation from human ES cell-derived EBs. These results demonstrate that co-culture of human ES-cell-derived EBs with human BM stromal cells might lead to more efficient hematopoietic differentiation from human ES cells cultured alone. Further study is warranted to evaluate the underlying mechanism

    Enzymatic formation of carbohydrate rings catalyzed by single-walled carbon nanotubes

    No full text
    Macrocyclic carbohydrate rings were formed via enzymatic reactions around single-walled carbon nanotubes (SWNTs) as a catalyst. Cyclodextrin glucanotransferase, starch substrate and SWNTs were reacted in buffer solution to yield cyclodextrin (CD) rings wrapped around individual SWNTs. Atomic force microscopy showed the resulting complexes to be rings of 12-50 nm in diameter, which were highly soluble and dispersed in aqueous solution. They were further characterized by Raman and Fourier transform infrared spectroscopy and molecular simulation using density functional theory calculation. In the absence of SWNT, hydrogen bonding between glucose units determines the structure of maltose (the precursor of CD) and produces the curvature along the glucose chain. Wrapping SWNT along the short axis was preferred with curvature in the presence of SWNTs and with the hydrophobic interactions between the SWNTs and CD molecules. This synthetic approach may be useful for the functionalization of carbon nanotubes for development of nanostructures. (c) Springer-Verlag Berlin Heidelberg 2016101sciescopu

    Reversible ammonia uptake at room temperature in a robust and tunable metal-organic framework

    No full text
    Ammonia is useful for the production of fertilizers and chemicals for modern technology, but its high toxicity and corrosiveness are harmful to the environment and human health. Here, we report the recyclable and tunable ammonia adsorption using a robust imidazolium-based MOF (JCM-1) that uptakes 5.7 mmol g(-1) of NH3 at 298 K reversibly without structural deformation. Furthermore, a simple substitution of NO3- with Cl- in a post-synthetic manner leads to an increase in the NH3 uptake capacity of JCM-1(Cl-) up to 7.2 mmol g(-1).11Nsciescopu

    Stress-activated miR-204 governs senescent phenotypes of chondrocytes to promote osteoarthritis development

    No full text
    Copyright © 2019 The Authors, A progressive loss of cartilage matrix leads to the development of osteoarthritis (OA). Matrix homeostasis is disturbed in OA cartilage as the result of reduced production of cartilage-specific matrix and increased secretion of catabolic mediators by chondrocytes. Chondrocyte senescence is a crucial cellular event contributing to such imbalance in matrix metabolism during OA development. Here, we identify miR-204 as a markedly up-regulated microRNA in OA cartilage. miR-204 is induced by transcription factors GATA4 and NF-B in response to senescence signals. Up-regulated miR-204 simultaneously targets multiple components of the sulfated proteoglycan (PG) biosynthesis pathway, effectively shutting down PG anabolism. Ectopic expression of miR-204 in joints triggers spontaneous cartilage loss and OA development, whereas miR-204 inhibition ameliorates experimental OA, with concomitant recovery of PG synthesis and suppression of inflammatory senescence-associated secretory phenotype (SASP) factors in cartilage. Collectively, we unravel a stress-activated senescence pathway that underlies disrupted matrix homeostasis in OA cartilag

    Solvent-dependent self-assembly of two dimensional layered perovskite (C6H5CH2CH2NH3)2MCl4 (M = Cu, Mn) thin films in ambient humidity

    Get PDF
    Abstract Two dimensional layered organic-inorganic halide perovskites offer a wide variety of novel functionality such as solar cell and optoelectronics and magnetism. Self-assembly of these materials using solution process (ex. spin coating) makes crystalline thin films synthesized at ambient environment. However, flexibility of organic layer also poses a structure stability issue in perovskite thin films against environment factors (ex. moisture). In this study, we investigate the effect of solvents and moisture on structure and property in the (C6H5(CH2)2NH3)2(Cu, Mn)Cl4 (Cu-PEA, Mn-PEA) perovskite thin films spin-coated on Si wafer using three solvents (H2O, MeOH, MeOH + H2O). A combination of x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) show that relative humidity (RH) has a profound effect on perovskite thin films during sample synthesis and storage, depending on the kind of solvent used. The ones prepared using water (Cu-PEA:H2O, Mn-PEA:H2O) show quite different behavior from the other cases. According to time-dependent XRD, reversible crystalline-amorphous transition takes place depending on RH in the former cases, whereas the latter cases relatively remain stable. It also turns out from XAS that Mn-PEA thin films prepared with solvents such as MeOH and MeOH + H2O are disordered to the depth of about 4 nm from surface
    corecore