5 research outputs found

    Performance of Pleurotus ostreatus mushroom grown on maize stalk residues supplemented with various levels of maize flour and wheat bran

    No full text
    Abstract Improving the performance of mushroom in terms of high production and fast growth rate is essential in mushroom cultivation. In the present study the performance of Pleurotus ostreatus was evaluated using varying levels of wheat bran (WB) and maize flour (MF). The results indicated that Pleurotus ostreatus was highly influenced by different levels of supplementation, with 8% WB, 18% WB and 2% MF having higher contamination rate. The low levels of supplementation gave significantly better mycelial growth rate (MGR) and shorter colonisation period as observed that the control had highest MGR whereby 20% MF had lowest MGR. The pinning time (TP) was shortest at the first flush with minimum of 3 days (12% MF). The higher levels of supplementation showed maximum biological efficiency (BE) such as 14% MF, 12% WB and 14% WB. The yield was also higher at high levels of supplementation such as 20% MF and 8% MF being the exception in the lower levels. Based on the results it was observed that for fast production of oyster mushroom there is no need to supplement the maize stalk substrate but for improved productivity supplements can be added up to certain limits such as 14% MF and 12 WB

    Performance of Pleurotus pulmonarius mushroom grown on maize stalk residues supplemented with various levels of maize flour and wheat bran

    No full text
    Abstract The use of supplemented agricultural waste in mushroom cultivation can be one of the environmentally friendly strategies for poverty alleviation. The study evaluated the performance of Pleurotus pulmonarius mushroom grown on maize stalk supplemented with varying levels of wheat bran (WB) and maize flour (MF). A completely random design was used for the experiments. It was observed that Pleurotus pulmonarius was significantly affected by varying levels of supplementation, as 20% WB supplementation encountered higher contamination. The lower supplementation levels gave significantly shorter colonisation period with better mycelial growth rate (MGR). The 2% MF, 2% WB and 4% WB gave significantly higher MGR and faster colonisation. The shortest pinning time (TP) was observed at the first flush with the minimum of 2 days. Higher supplementation levels gave maximum yield and biological efficiency (BE). With further increase of supplementation above a 12% WB and 14% MF, the BE and yield declined. Lower supplementation levels resulted in quicker colonisation period and improved growth rate, whereas high supplementation gave better production in terms of yield and BE. Therefore, for the purpose of maximum production, 12% WB and 14% MF may be recommended while for fast production time, 2% MF and 2% WB are recommended

    Characterization and Biological Evaluation of Zinc Oxide Nanoparticles Synthesized from Pleurotus ostreatus Mushroom

    No full text
    This study aimed to biosynthesize zinc oxide nanoparticles (ZnO NPs) using Pleurotus ostreatus to achieve a simple ecofriendly method, and further evaluate antimicrobial activity and cytotoxicity towards HepG2 and Hek293 cells. The nanoparticles were characterized through UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission and scanning electron microscopy (TEM and SEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and dynamic light scattering (DLS). The minimal inhibitory concentration (MIC) for antimicrobial activity and MTT assay for cytotoxicity were conducted in vitro. The study revealed an efficient, simple, and ecofriendly method for synthesis of ZnO NPs that have antimicrobial activity. UV-Vis showed peaks at 340 and 400 nm, and the bioactive compounds found in the mushroom acted as capping, reducing, and stabilizing agents. TEM characterized NPs as an amorphous nanosheet, with preferential orientation as projected by SAED patterns. The spherical and agglomerated morphology was observed on SEM, with EDX proving the presence of Zn and O, while XRD indicated a crystallite size of 7.50 nm and a stable nature (zeta potential of −23.3 mV). High cytotoxicity on Hek293 and HepG2 cells was noted for ZnO NPs. The study provides an alternative, ecofriendly method for biosynthesis of ZnO NPs that have antibacterial activity and potential use in cancer treatment
    corecore