3 research outputs found
An optimal transmission strategy in zero-sum matrix games under intelligent jamming attacks
Cognitive radio networks are more susceptible to jamming attacks due to the nature of unlicensed users accessing the spectrum by performing dynamic spectrum access. In such a context, a natural concern for operators is the resilience of the system. We model such a scenario as one of adversity in the system consisting of a single legitimate (LU) pair and malicious user (MU). The aim of the LU is to maximize throughput of transmissions, while the MU is to minimize the throughput of the LU completely. We present the achievable transmission rate of the LU pair under jamming attacks taking into account mainly on the transmission power per channel. Furthermore, we embed our utility function in a zero-sum matrix game and extend this by employing a fictitious play when both players learn each other’s strategy over time, e.g., such an equilibrium becomes the system’s global operating point. We further extend this to a reinforcement learning (RL) approach, where the LU is given the advantage of incorporating RL methods to maximize its throughput for fixed jamming strategies
A systematic review of cardiac time intervals utilising non-invasive fetal electrocardiogram in normal fetuses
Abstract Background Non-invasive fetal electrocardiogram (NIFECG) is an evolving technology in fetal surveillance which is attracting increasing research interest. There is however, only limited data outlining the reference ranges for normal cardiac time intervals (CTIs). The objective of our group was to carry out a systematic review to outline normal fetal CTIs using NIFECG. Methods A systematic review of peer reviewed literature was performed, searching PUBMED,Ovid MEDLINE and EMBASE. The outcomes of interest included fetal CTIs (P wave duration, PR interval, QRS duration and QT interval) and a descriptive summary of relevant studies as well. The outcomes were grouped as early pre-term (≤ 32 weeks), moderate to late pre-term (32–37 weeks) and term (37–41 weeks). Results 8 studies were identified as suitable for inclusion. Reference ranges of CTIs were generated. Both PR interval and QRS duration demonstrated a linear correlation with advancing gestation. Several studies also demonstrated a reduction in signal acquisition between 27 and 32 weeks due to the attenuation by vernix caseosa. In this group, both the P wave and T waves were difficult to detect due to signal strength and interference. Conclusion NIFECG demonstrates utility to quantify CTIs in the fetus, particularly at advanced gestations. Larger prospective studies should be directed towards establishing reliable CTIs across various gestations