72 research outputs found

    Incidence and Prevalence of Chronic Obstructive Pulmonary Disease among Aboriginal Peoples in Alberta, Canada

    Get PDF
    Background Chronic obstructive pulmonary disease (COPD) is a major respiratory disorder, largely caused by smoking that has been linked with large health inequalities worldwide. There are important gaps in our knowledge about how COPD affects Aboriginal peoples. This retrospective cohort study assessed the epidemiology of COPD in a cohort of Aboriginal peoples relative to a non-Aboriginal cohort. Methods We used linkage of administrative health databases in Alberta (Canada) from April 1, 2002 to March 31, 2010 to compare the annual prevalence, and the incidence rates of COPD between Aboriginal and non-Aboriginal cohorts aged 35 years and older. Poisson regression models adjusted the analysis for important sociodemographic factors. Results Compared to a non-Aboriginal cohort, prevalence estimates of COPD from 2002 to 2010 were 2.3 to 2.4 times greater among Registered First Nations peoples, followed by the Inuit (1.86 to 2.10 times higher) and the Métis (1.59 to 1.67 times higher). All Aboriginal peoples had significantly higher COPD incidence rates than the non-Aboriginal group (incidence rate ratio [IRR]: 2.1; 95% confidence interval [CI]: 1.97, 2.27). COPD incidence rates were higher in First Nation peoples (IRR: 2.37; 95% CI: 2.19, 2.56) followed by Inuit (IRR: 1.92; 95% CI: 1.64, 2.25) and Métis (IRR: 1.49; 95% CI: 1.32, 1.69) groups. Conclusions We found a high burden of COPD among Aboriginal peoples living in Alberta; a province with the third largest Aboriginal population in Canada. Altogether, the three Aboriginal peoples groups have higher prevalence and incidence of COPD compared to a non-Aboriginal cohort. The condition affects the three Aboriginal groups differently; Registered First Nations and Inuit have the highest burden of COPD. Reasons for these differences should be further explored within a framework of social determinants of health to help designing interventions that effectively influence modifiable COPD risk factors in each of the Aboriginal groups

    Prevalence and Determinants of Sinus Problems in Farm and Non-Farm Populations of Rural Saskatchewan, Canada

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Canadian Institutes of Health Research - MOP-187209-POP-CCAA-11829Peer ReviewedAlthough sinus problems have long been recognized as the most common respiratory symptoms associated with agricultural work, there is a scarcity of recent studies and/or reliable estimates as to the true prevalence or risk factors of sinus problems related to farming. The aim of this study was to determine the prevalence of sinus problems in farming and non-farming rural populations and further investigate the association of individual (for example life-style, occupational), contextual (e.g., environmental), and important covariates (e.g., age, sex) with sinus problems. A large-scale cross-sectional study was conducted in farm and non-farm residents of rural Saskatchewan, Canada. A logistic regression model based on a generalized estimating equations approach were fitted to investigate the risk factors of sinus problems. Sinus problems were reported by 2755 (34.0%) of the 8101 subjects. Farm residents were more likely to spend their first year of life on farm compared with non-farm residents, and indicated a significantly lower risk of sinus problems. Meanwhile, occupational exposure to solvent and mold were associated with an increased risk of sinus problems. Some health conditions such as allergy and stomach acidity/reflux, family history, and female sex were also related to a higher risk of sinus problems. Farm residents had a significantly lower risk of sinus problems than non-farm residents, likely due to the exposure to farm specific environments in their early life

    Cough aerosol in healthy participants: fundamental knowledge to optimize droplet-spread infectious respiratory disease management

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Influenza A H1N1 virus can be transmitted via direct, indirect, and airborne route to non-infected subjects when an infected patient coughs, which expels a number of different sized droplets to the surrounding environment as an aerosol. The objective of the current study was to characterize the human cough aerosol pattern with the aim of developing a standard human cough bioaerosol model for Influenza Pandemic control.</p> <p>Method</p> <p>45 healthy non-smokers participated in the open bench study by giving their best effort cough. A laser diffraction system was used to obtain accurate, time-dependent, quantitative measurements of the size and number of droplets expelled by the cough aerosol.</p> <p>Results</p> <p>Voluntary coughs generated droplets ranging from 0.1 - 900 microns in size. Droplets of less than one-micron size represent 97% of the total number of measured droplets contained in the cough aerosol. Age, sex, weight, height and corporal mass have no statistically significant effect on the aerosol composition in terms of size and number of droplets.</p> <p>Conclusions</p> <p>We have developed a standard human cough aerosol model. We have quantitatively characterized the pattern, size, and number of droplets present in the most important mode of person-to-person transmission of IRD: the cough bioaerosol. Small size droplets (< 1 μm) predominated the total number of droplets expelled when coughing. The cough aerosol is the single source of direct, indirect and/or airborne transmission of respiratory infections like the Influenza A H1N1 virus.</p> <p>Study design</p> <p>Open bench, Observational, Cough, Aerosol study</p

    Allergic rhinitis and genetic components: focus on Toll-like receptors (TLRs) gene polymorphism

    No full text
    Zhiwei Gao1, Donna C Rennie2, Ambikaipakan Senthilselvan11Department of Public Health Sciences, School of Public Health, University of Alberta, Edmonton, Alberta, Canada; 2College of Nursing and Canadian Centre for Health and Agricultural Safety, University of Saskatchewan, Saskatoon, Saskatchewan, CanadaAbstract: Allergic rhinitis represents a global health issue affecting 10% to 25% of the population worldwide. Over the years, studies have found that allergic diseases, including allergic rhinitis, are associated with immunological responses to antigens driven by a Th2-mediated immune response. Because Toll-like receptors (TLRs) are involved in both innate and adaptive immune responses to a broad variety of antigens, the association between polymorphisms of TLRs and allergic diseases has been the focus in many animal and human studies. Although the etiology of allergic rhinitis is still unknown, extensive research over the years has confirmed that the underlying causes of allergic diseases are due to many genetic and environmental factors, along with the interactions among them, which include gene&amp;ndash;environment, gene&amp;ndash;gene, and environment&amp;ndash;environment interactions. Currently, there is great inconsistency among studies mainly due to differences in genetic background and unique gene&amp;ndash;environment interactions. This paper reviews studies focusing on the association between TLR polymorphisms and allergic diseases, including allergic rhinitis, which would help researchers better understand the role of TLR polymorphisms in the development of allergic rhinitis, and ultimately lead to more efficient therapeutic interventions being developed.Keywords: allergic rhinitis, allergic diseases, Toll-like receptor

    Identification of Sex-Specific Genetic Polymorphisms Associated with Asthma in Middle-Aged and Older Canadian Adults: An Analysis of CLSA Data

    Get PDF
    Purpose: Asthma is a chronic heterogeneous respiratory disease resulting from a complex interplay between genetic variations and environmental exposures. There are sex disparities in the prevalence and severity of asthma in males and females. Asthma prevalence is higher in males during childhood but increases in females in adulthood. The mechanisms underlying these sex differences are not well understood; nevertheless, genetic variations, hormonal changes, and environmental influences are thought to play important roles. This study aimed to identify sex-specific genetic variants associated with asthma using CLSA genomic and questionnaire data. Methods: First, we conducted a genome-wide SNP-by-sex interaction analysis on 23,323 individuals, examining 416,562 single nucleotide polymorphisms (SNPs) after quality control, followed by sex-stratified survey logistic regression of SNPs with interaction p-value less than 10® 5. Results: Out of the 49 SNPs with interaction p-value less than 10− 5, a sex-stratified survey logistic regression showed that five male-specific SNPs (rs6701638, rs17071077, rs254804, rs6013213, and rs2968822) in/near KIF26B, NMBR, PEPD, RTN4, and NFATC2 loci, and three female-specific SNPs (rs2968801, rs2864052, and rs9525931) in/near RTN4, and SERP2 loci were significantly associated with asthma after Bonferroni correction. An SNP (rs36213) in the EPHB1 gene was significantly associated with an increased risk of asthma in males [OR=1.35, 95% CI (1.14, 1.60)] but with a reduced risk of asthma in females [OR=0.84, 95% CI (0.76, 0.92)] after Bonferroni correction. Conclusion: We discovered novel sex-specific genetic markers in/near the KIF26B, RTN4, EPHB1, NMBR, SERP2, PEPD, and NFATC2 genes that could potentially shed light on the sex differences in asthma susceptibility in males and females. Future mechanistic studies are required to understand better the underlying sex-related pathways of the identified loci in asthma development

    Respiratory Symptoms and Asthma in Two Farming Populations: A Comparison of Hutterite and Non-Hutterite Children

    No full text
    OBJECTIVE: To determine the prevalence of asthma and respiratory symptoms in a farming population of Hutterite and non-Hutterite children

    Occupational Pesticide Exposures and Respiratory Health

    Get PDF
    Pesticides have been widely used to control pest and pest-related diseases in agriculture, fishery, forestry and the food industry. In this review, we identify a number of respiratory symptoms and diseases that have been associated with occupational pesticide exposures. Impaired lung function has also been observed among people occupationally exposed to pesticides. There was strong evidence for an association between occupational pesticide exposure and asthma, especially in agricultural occupations. In addition, we found suggestive evidence for a link between occupational pesticide exposure and chronic bronchitis or COPD. There was inconclusive evidence for the association between occupational pesticide exposure and lung cancer. Better control of pesticide uses and enforcement of safety behaviors, such as using personal protection equipment (PPE) in the workplace, are critical for reducing the risk of developing pesticide-related symptoms and diseases. Educational training programs focusing on basic safety precautions and proper uses of personal protection equipment (PPE) are possible interventions that could be used to control the respiratory diseases associated with pesticide exposure in occupational setting
    corecore