1,201 research outputs found
Modelling failure mechanisms of soft cliff profiles
A large proportion of the 11,000 km coastline of the United Kingdom is backed by soft cliffs. These cliffs are subject to frequent slumping and landslip events, particularly where sea and ground water percolates into the soil and rock. Many of these cliffs are formed from glaciogenic sediments, which experience severe erosion and rapid recession with long-term horizontal recession rates typically up to 2-3 m/year. A series of scaled physical model tests have been conducted using a large centrifuge facility with two-dimensional cliff models. These were tested in a wave flume container located on the centrifuge. Wave loading was created using a quasi-flap paddle system that was located at the opposite end of the centrifuge box. A number of tests were conducted using different cliff materials (i.e. combinations of sand and Portland cement). A parametric study was carried out to assess the influence of variations in cliff geometry and height, soil properties, wave amplitude and period. From these tests, it has been found that generally, failures occurred by progressive undercutting of the cliff toe, followed by global failure of the cliff mass
Measurement of a side wall permeability effect in soil columns using fibre-optics sensing
Side-wall leakage - the preferential flow of water or pollutants near the wall of a side column - has been studied using in-situ fibre optical detection of a dye solution at the boundary and in the centre of a soil column
Blind fluorescence structured illumination microscopy: A new reconstruction strategy
In this communication, a fast reconstruction algorithm is proposed for
fluorescence \textit{blind} structured illumination microscopy (SIM) under the
sample positivity constraint. This new algorithm is by far simpler and faster
than existing solutions, paving the way to 3D and/or real-time 2D
reconstruction.Comment: submitted to IEEE ICIP 201
Non-invasive portable geophysical tool to monitor water content in earthen long linear infrastructures
The use of electrical conductivity measurements from a non-invasive hand held electromagnetic probe is showcased to monitor the water content of earthen embankments at routine inspections. A methodology to convert the electrical conductivity measurements from the electromagnetic device into water content values is illustrated. The methodology is based on measuring the soil electrical conductivity variation with respect to a baseline reference condition and calibrating a water content - electrical conductivity relationship by comparing electrical conductivity readings from the electromagnetic probes with water content readings taken from geotechnical probes installed in a few sections of the embankment. The values of water content converted from the conductivity measurements according to the proposed procedure were found to be in very good agreement with independent measures of water content taken at times well beyond the calibration period
An experimental investigation of the independent effect of suction and degree of saturation on very small-strain stiffness of unsaturated sand
The paper presents an experimental investigation of very small strain stiffness of unsaturated sand. A triaxial test apparatus was equipped with bender elements and compression discs in order to assess the stiffness at very small strains by measuring the velocity of propagation of shear and compression waves through an unsaturated sample. The negative water column method was adopted to apply suction at the base of the sample. The experiments were designed to investigate the independent effect of suction and degree of saturation on the wave propagation velocities. This was achieved by testing the sand sample on both the drying and wetting path
Long Range Hydration Effects in Electrolytic Free Suspended Black Films
The force law within free suspended black films made of negatively charged
Aerosol-OT (AOT) with added LiCl or CsCl is studied accurately using X-ray
reflectivity (ca. 1{\AA}). We find an electrolyte concentration threshold above
which a substantial additional repulsion is detected in the LiCl films, up to
distances of 100 {\AA}. We interpret this phenomenon as an augmentation of the
Debye screening length, due to the local screening of the condensed hydrophilic
counterions by the primary hydration shell.Comment: 4 pages, 4 figures, to be published Phys. Rev. Let
Two-photon fluorescence isotropic-single-objective microscopy
International audienceTwo-photon excitation provides efficient optical sectioning in three-dimensional fluorescence microscopy, independently of a confocal detection. In two-photon laser-scanning microscopy, the image resolution is governed by the volume of the excitation light spot, which is obtained by focusing the incident laser beam through the objective lens of the microscope. The light spot being strongly elongated along the optical axis, the axial resolution is much lower than the transverse one. In this Letter we show that it is possible to strongly reduce the axial size of the excitation spot by shaping the incident beam and using a mirror in place of a standard glass slide to support the sample. Provided that the contribution of sidelobes can be removed through deconvolution procedures, this approach should allow us to achieve similar axial and lateral resolution
Isotropic Single Objective (ISO) microscopy : Theory and Experiment
International audienceIsotropic single-objective (ISO) microscopy is a recently proposed imaging technique that can theoretically exhibit the same axial and transverse resolutions as 4Pi microscopy while using a classical single-objective confocal microscope. This achievement is obtained by placing the sample on a mirror and shaping the illumination beam so that the interference of the incident and mirror-reflected fields yields a quasi-spherical spot. In this work, we model the image formation in the ISO fluorescence microscope and simulate its point spread function. Then, we describe the experimental implementation and discuss its practical difficulties
Fluorescence blind structured illumination microscopy: a new reconstruction strategy
International audienceIn this communication, a fast reconstruction algorithm is proposed for fluorescence blind structured illumination mi-croscopy (SIM) under the sample positivity constraint. This new algorithm is by far simpler and faster than existing solutions , paving the way to 3D and real-time 2D reconstruction
Clay fine fissuring monitoring using miniature geo-electrical resistivity arrays
Abstract This article describes a miniaturised electrical imaging (resistivity tomography) technique to map the cracking pattern of a clay model. The clay used was taken from a scaled flood embankment built to study the fine fissuring due to desiccation and breaching process in flooding conditions. The potential of using a miniature array of electrodes to follow the evolution of the vertical cracks and number them during the drying process was explored. The imaging technique generated two-dimensional contoured plots of the resistivity distribution within the model before and at different stages of the desiccation process. The change in resistivity associated with the widening of the cracks were monitored as a function of time. Experiments were also carried out using a selected conductive gel to slow down the transport process into the cracks to improve the scanning capabilities of the equipment. The main vertical clay fissuring network was obtained after inversion of the experimental resistivity measurements and validated by direct observations
- âŠ