210 research outputs found
Efficient computation of the second-Born self-energy using tensor-contraction operations
In the nonequilibrium Green's function approach, the approximation of the
correlation self-energy at the second-Born level is of particular interest,
since it allows for a maximal speed-up in computational scaling when used
together with the Generalized Kadanoff-Baym Ansatz for the Green's function.
The present day numerical time-propagation algorithms for the Green's function
are able to tackle first principles simulations of atoms and molecules, but
they are limited to relatively small systems due to unfavourable scaling of
self-energy diagrams with respect to the basis size. We propose an efficient
computation of the self-energy diagrams by using tensor-contraction operations
to transform the internal summations into functions of external low-level
linear algebra libraries. We discuss the achieved computational speed-up in
transient electron dynamics in selected molecular systems.Comment: 9 pages, 4 figures, 1 tabl
Spin transport in Heisenberg antiferromagnets
We analyze spin transport in insulating antiferromagnets described by the XXZ
Heisenberg model in two and three dimensions. Spin currents can be generated by
a magnetic-field gradient or, in systems with spin-orbit coupling,
perpendicular to a time-dependent electric field. The Kubo formula for the
longitudinal spin conductivity is derived analogously to the Kubo formula for
the optical conductivity of electronic systems. The spin conductivity is
calculated within interacting spin-wave theory. In the Ising regime, the XXZ
magnet is a spin insulator. For the isotropic Heisenberg model, the
dimensionality of the system plays a crucial role: In d=3 the regular part of
the spin conductivity vanishes linearly in the zero frequency limit, whereas in
d=2 it approaches a finite zero frequency value.Comment: 9 pages, 5 figure
Light-enhanced electron-phonon coupling from nonlinear electron-phonon coupling
We investigate an exact nonequilibrium solution of a two-site electron-phonon model, where an infrared-active phonon that is nonlinearly coupled to the electrons is driven by a laser field. The time-resolved electronic spectrum shows coherence-incoherence spectral weight transfer, a clear signature of light-enhanced electron-phonon coupling. The present study is motivated by recent evidence for enhanced electron-phonon coupling in pump-probe terahertz and angle-resolved photoemission spectroscopy in bilayer graphene when driven near resonance with an infrared-active phonon mode [E. Pomarico et al., Phys. Rev. B 95, 024304 (2017)], and by a theoretical study suggesting that transient electronic attraction arises from nonlinear electron-phonon coupling [D. M. Kennes et al., Nat. Phys. 13, 479 (2017)]. We show that a linear scaling of light-enhanced electron-phonon coupling with the pump field intensity emerges, in accordance with a time-nonlocal self-energy based on a mean-field decoupling using quasiclassical phonon coherent states. Finally, we demonstrate that this leads to enhanced double occupancies in accordance with an effective electron-electron attraction. Our results suggest that materials with strong phonon nonlinearities provide an ideal playground to achieve light-enhanced electron-phonon coupling and possibly light-induced superconductivity
Ultrafast modification of Hubbard in a strongly correlated material: ab initio high-harmonic generation in NiO
Engineering effective electronic parameters is a major focus in condensed
matter physics. Their dynamical modulation opens the possibility of creating
and controlling physical properties in systems driven out of equilibrium. In
this work, we demonstrate that the Hubbard , the on-site Coulomb repulsion
in strongly correlated materials, can be modified on femtosecond time scales by
a strong nonresonant laser excitation in the prototypical charge transfer
insulator NiO. Using our recently developed time-dependent density functional
theory plus self-consistent (TDDFT+U) method, we demonstrate the importance
of a dynamically modulated in the description of the high-harmonic
generation of NiO. Our study opens the door to novel ways of modifying
effective interactions in strongly correlated materials via laser driving,
which may lead to new control paradigms for field-induced phase transitions and
perhaps laser-induced Mott insulation in charge-transfer materials
Superconductivity and Pairing Fluctuations in the Half-Filled Two-Dimensional Hubbard Model
The two-dimensional Hubbard model exhibits superconductivity with d-wave
symmetry even at half-filling in the presence of next-nearest neighbor hopping.
Using plaquette cluster dynamical mean-field theory with a continuous-time
quantum Monte Carlo impurity solver, we reveal the non-Fermi liquid character
of the metallic phase in proximity to the superconducting state. Specifically,
the low-frequency scattering rate for momenta near (\pi, 0) varies
non-monotonously at low temperatures, and the dc conductivity is T-linear at
elevated temperatures with an upturn upon cooling. Evidence is provided that
pairing fluctuations dominate the normal-conducting state even considerably
above the superconducting transition temperature.Comment: 4.3 pages, 4 figure
Theory of subcycle time-resolved photoemission: Application to terahertz photodressing in graphene
Motivated by recent experimental progress we revisit the theory of pump–probe time- and angle-resolved photoemission spectroscopy (trARPES), which is one of the most powerful techniques to trace transient pump-driven modifications of the electronic properties. The pump-induced dynamics can be described in different gauges for the light–matter interaction. Standard minimal coupling leads to the velocity gauge, defined by linear coupling to the vector potential. In the context of tight-binding (TB) models, the Peierls substitution is the commonly employed scheme for single-band models. Multi-orbital extensions – including the coupling of the dipole moments to the electric field – have been introduced and tested recently. In this work, we derive the theory of time-resolved photoemission within both gauges from the perspective of nonequilibrium Green’s functions. This approach naturally incorporates the photoelectron continuum, which allows for a direct calculation of the observable photocurrent. Following this route we introduce gauge-invariant expressions for the time-resolved photoemission signal. The theory is applied to graphene pumped with short terahertz pulses, which we treat within a first-principles TB model. We investigate the gauge invariance and discuss typical effects observed in subcycle time-resolved photoemission. Our formalism is an ideal starting point for realistic trARPES simulations including scattering effects
Quantum walk versus classical wave: Distinguishing ground states of quantum magnets by spacetime dynamics
We investigate wave packet spreading after a single spin flip in prototypical two-dimensional ferromagnetic and antiferromagnetic quantum spin systems. We find characteristic spatial magnon density profiles: While the ferromagnet shows a square-shaped pattern reflecting the underlying lattice structure, as exhibited by quantum walkers, the antiferromagnet shows a circular-shaped pattern which hides the lattice structure and instead resembles a classical wave pattern. We trace these fundamentally different behaviors back to the distinctly different magnon energy-momentum dispersion relations and also provide a real-space interpretation. Our findings point to opportunities for real-time, real-space imaging of quantum magnets both in materials science and in quantum simulators
Theory of light-enhanced phonon-mediated superconductivity
We investigate the dynamics of a phonon-mediated superconductor driven out of
equilibrium. The electronic hopping amplitude is ramped down in time, resulting
in an increased electronic density of states. The dynamics of the coupled
electron-phonon model is investigated by solving Migdal-Eliashberg equations
for the double-time Keldysh Green's functions. The increase of the density of
states near the Fermi level leads to an enhancement of superconductivity when
the system thermalizes to the new state at the same temperature. We provide a
time- and momentum-resolved view on this thermalization process, and show that
it involves fast processes associated with single-particle scattering and much
slower dynamics associated with the superconducting order parameter. The
importance of electron-phonon coupling for the rapid enhancement and the
efficient thermalization of superconductivity is demonstrated, and the results
are compared to a BCS time-dependent mean-field approximation.Comment: 12 pages, 8 figure
- …