16 research outputs found

    Guide to Magellan image interpretation

    Get PDF
    An overview of Magellan Mission requirements, radar system characteristics, and methods of data collection is followed by a description of the image data, mosaic formats, areal coverage, resolution, and pixel DN-to-dB conversion. The availability and sources of image data are outlined. Applications of the altimeter data to estimate relief, Fresnel reflectivity, and surface slope, and the radiometer data to derive microwave emissivity are summarized and illustrated in conjunction with corresponding SAR image data. Same-side and opposite-side stereo images provide examples of parallax differences from which to measure relief with a lateral resolution many times greater than that of the altimeter. Basic radar interactions with geologic surfaces are discussed with respect to radar-imaging geometry, surface roughness, backscatter modeling, and dielectric constant. Techniques are described for interpreting the geomorphology and surface properties of surficial features, impact craters, tectonically deformed terrain, and volcanic landforms. The morphologic characteristics that distinguish impact craters from volcanic craters are defined. Criteria for discriminating extensional and compressional origins of tectonic features are discussed. Volcanic edifices, constructs, and lava channels are readily identified from their radar outlines in images. Geologic map units are identified on the basis of surface texture, image brightness, pattern, and morphology. Superposition, cross-cutting relations, and areal distribution of the units serve to elucidate the geologic history

    Calibration and performance of the Galileo solid-state imaging system in Jupiter orbit

    Get PDF
    The solid-state imaging subsystem (SSI) on the National Aeronautics and Space Administration’s (NASA’s) Galileo Jupiter orbiter spacecraft has successfully completed its 2-yr primary mission exploring the Jovian system. The SSI has remained in remarkably stable calibration during the 8-yr flight, and the quality of the returned images is exceptional. Absolute spectral radiometric calibration has been determined to 4 to 6% across its eight spectral filters. Software and calibration files are available to enable radiometric, geometric, modulation transfer function (MTF), and scattered light image calibration. The charge-coupled device (CCD) detector endured the harsh radiation environment at Jupiter without significant damage and exhibited transient image noise effects at about the expected levels. A lossy integer cosine transform (ICT) data compressor proved essential to achieving the SSI science objectives given the low data transmission rate available from Jupiter due to a communication antenna failure. The ICT compressor does introduce certain artifacts in the images that must be controlled to acceptable levels by judicious choice of compression control parameter settings. The SSI team’s expertise in using the compressor improved throughout the orbital operations phase and, coupled with a strategy using multiple playback passes of the spacecraft tape recorder, resulted in the successful return of 1645 unique images of Jupiter and its satellites

    Calibration and performance of the Galileo solid-state imaging system in Jupiter orbit

    Get PDF
    The solid-state imaging subsystem (SSI) on the National Aeronautics and Space Administration’s (NASA’s) Galileo Jupiter orbiter spacecraft has successfully completed its 2-yr primary mission exploring the Jovian system. The SSI has remained in remarkably stable calibration during the 8-yr flight, and the quality of the returned images is exceptional. Absolute spectral radiometric calibration has been determined to 4 to 6% across its eight spectral filters. Software and calibration files are available to enable radiometric, geometric, modulation transfer function (MTF), and scattered light image calibration. The charge-coupled device (CCD) detector endured the harsh radiation environment at Jupiter without significant damage and exhibited transient image noise effects at about the expected levels. A lossy integer cosine transform (ICT) data compressor proved essential to achieving the SSI science objectives given the low data transmission rate available from Jupiter due to a communication antenna failure. The ICT compressor does introduce certain artifacts in the images that must be controlled to acceptable levels by judicious choice of compression control parameter settings. The SSI team’s expertise in using the compressor improved throughout the orbital operations phase and, coupled with a strategy using multiple playback passes of the spacecraft tape recorder, resulted in the successful return of 1645 unique images of Jupiter and its satellites

    Science Overview of the Europa Clipper Mission

    Get PDF
    The goal of NASA’s Europa Clipper mission is to assess the habitability of Jupiter’s moon Europa. After entering Jupiter orbit in 2030, the flight system will collect science data while flying past Europa 49 times at typical closest approach distances of 25–100 km. The mission’s objectives are to investigate Europa’s interior (ice shell and ocean), composition, and geology; the mission will also search for and characterize any current activity including possible plumes. The science objectives will be accomplished with a payload consisting of remote sensing and in-situ instruments. Remote sensing investigations cover the ultraviolet, visible, near infrared, and thermal infrared wavelength ranges of the electromagnetic spectrum, as well as an ice-penetrating radar. In-situ investigations measure the magnetic field, dust grains, neutral gas, and plasma surrounding Europa. Gravity science will be achieved using the telecommunication system, and a radiation monitoring engineering subsystem will provide complementary science data. The flight system is designed to enable all science instruments to operate and gather data simultaneously. Mission planning and operations are guided by scientific requirements and observation strategies, while appropriate updates to the plan will be made tactically as the instruments and Europa are characterized and discoveries emerge. Following collection and validation, all science data will be archived in NASA’s Planetary Data System. Communication, data sharing, and publication policies promote visibility, collaboration, and mutual interdependence across the full Europa Clipper science team, to best achieve the interdisciplinary science necessary to understand Europa

    Mission Architecture and Technology Options for a Flagship Class Venus In Situ Mission

    No full text
    Venus, as part of the inner triad with Earth and Mars, represents an important exploration target if we want to learn more about solar system formation and evolution. Comparative planetology could also elucidate the differences between the past, present, and future of these three planets, and can help with the characterization of potential habitable zones in our solar system and, by extension, extrasolar systems. A long lived in situ Venus mission concept, called the Venus Mobile Explorer, was prominently featured in NASA's 2006 SSE Roadmap and supported in the community White Paper by the Venus Exploration Analysis Group (VEXAG). Long-lived in situ missions are expected to belong to the largest (Flagship) mission class, which would require both enabling and enhancing technologies beside mission architecture options. Furthermore, extreme environment mitigation technologies for Venus are considered long lead development items and are expected to require technology development through a dedicated program. To better understand programmatic and technology needs and the motivating science behind them, in this fiscal year (FY08) NASA is funding a Venus Flaghip class mission study, based on key science and technology drivers identified by a NASA appointed Venus Science and Technology Definition Team (STDT). These mission drivers are then assembled around a suitable mission architecture to further refine technology and cost elements. In this paper we will discuss the connection between the final mission architecture and the connected technology drivers from this NASA funded study, which - if funded - could enable a future Flagship class Venus mission and potentially drive a proposed Venus technology development program

    Galileo Images of Lightning on Jupiter

    No full text
    In October and November of 1997 the Galileo Solid State Imager (SSI) detected lightning from 26 storms on the night side of Jupiter. More than half the surface area of the planet was surveyed. The data include images of lightning against moonlit clouds (illuminated by light from Io) and images of the same storm on the day and night sides. The spatial resolution ranged from 23 to 134 km per pixel, while the storms ranged in size up to ∼1500 km. Most storms were imaged more than once, and they typically exhibit many flashes per minute. The storms occur only in areas of cyclonic shear and near the centers of westward jets. Latitudes near 50° in both hemispheres are particularly active, although the northern hemisphere has more lightning overall. The greatest optical energy observed in a single flash was 1.6×10^(10) J, which is several times larger than terrestrial superbolts. The average optical power per unit area is 3× 10^(−7) W m^(−2), which is close to the terrestrial value. The limited color information is consistent with line and continuum emission from atomic hydrogen and helium. The intensity profiles of resolved lightning strikes are bell-shaped, with the half-width at half-maximum ranging from ∼45 to 80 km. We used these widths to infer the depth of the strikes, assuming that the appearance of each is the result of light scattering from a point source below the cloudtops. We conclude that lightning must be occurring within or below the jovian water cloud. The occurrence of lightning in regions of cyclonic shear has important implications for the dynamics of Jupiter's atmosphere

    Galileo Imaging of Jupiter’s Atmosphere: The Great Red Spot, Equatorial Region, and White Ovals

    No full text
    During the first six orbits of the Galileo spacecraft's prime mission, the Solid State Imaging (SSI) system acquired multispectral image mosaics of Jupiter's Great Red Spot, an equatorial belt/zone boundary, a “5-μm hot spot” similar to the Galileo Probe entry site, and two of the classic White Ovals. We present mosaics of each region, approximating their appearance at visible wavelengths and showing cloud height and opacity variations. The local wind field is derived by tracking cloud motions between multiple observations of each region with time separations of roughly 1 and 10 hr. Vertical cloud structure is derived in a companion paper by Banfieldet al. (Icarus135, 230–250). Galileo's brief, high-resolution observations complement Earth-based and Voyager studies and offer local meteorological context for the Galileo Probe results. Our results show that the dynamics of the zonal jets and large vortices have changed little since Voyager, with a few exceptions. We detect a cyclonic current within the center of the predominantly anticyclonic Great Red Spot. The zonal velocity difference between 0° S and 6° S has increased by 20 m sec^(−1). We measure a strong northeast flow approaching the hot spot. This flow indicates either massive horizontal convergence or the presence of a large anticyclonic vortex southeast of the hot spot. The current compact arrangement of two White Ovals and a cyclonic structure greatly perturbs the zonal jets in that region
    corecore