155 research outputs found

    The merit-order effect: a detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany

    Get PDF
    The German feed-in support of electricity generation from renewable energy sources has led to high growth rates of the supported technologies. Critics state that the costs for consumers are too high. An important aspect to be considered in the discussion is the price effect created by renewable electricity generation. This paper seeks to analyse the impact of privileged renewable electricity generation on the electricity market in Germany. The central aspect to be analysed is the impact of renewable electricity generation on spot market prices. The results generated by an agent-based simulation platform indicate that the financial volume of the price reduction is considerable. In the short run, this gives rise to a distributional effect which creates savings for the demand side by reducing generator profits. In the case of the year 2006, the volume of the merit-order effect exceeds the volume of the net support payments for renewable electricity generation which have to be paid by consumers. --

    Agent-based simulation of electricity markets: a literature review

    Get PDF
    Liberalisation, climate policy and promotion of renewable energy are challenges to players of the electricity sector in many countries. Policy makers have to consider issues like market power, bounded rationality of players and the appearance of fluctuating energy sources in order to provide adequate legislation. Furthermore the interactions between markets and environmental policy instruments become an issue of increasing importance. A promising approach for the scientific analysis of these developments is the field of agent-based simulation. The goal of this article is to provide an overview of the current work applying this methodology to the analysis of electricity markets. --

    Renewable energy sources to secure the base load in electricity supply. Summary

    Get PDF
    The share of renewable energies in Germany\u27s electricity supply has been increasing at an impressive rate in recent years: it already amounts to over 20 %, about half of which comes from fluctuating sources - mainly wind power and photovoltaics. In the long term (by 2050), the goal is to achieve almost full supply with renewable energies. This makes it clear that the system of electricity supply will be subject to an upheaval of historic proportions in the coming decades. The TAB report addresses the question of how the base load in the electricity supply can continue to be secured under these conditions. This question can only be addressed in a system perspective that encompasses all levels: from generation to transport and distribution to the consumption of electricity. Therefore, the question expands to how a secure supply can be organised as a whole. It is becoming apparent that the electricity system must be able to react much more flexibly than before to different feed-in and demand situations. Options for increasing flexibility exist in many areas: > Increasing the efficiency of the grids > Increasing the flexibility of the conventional power plant fleet and its mode of operation > Greater orientation of electricity production from renewable energies to demand > load management, and not least the construction of additional storage facilities. In all of these fields of action, the TAB report identifies options for action in which the public sector and the energy policy actors in the executive and legislative branches can contribute to the success of the upcoming transformation of the electricity supply by shaping the framework conditions

    Supply curves of electricity-based gaseous fuels in the MENA region

    Get PDF
    The utilization of electricity-based fuels (e-fuels) is a potential strategy component for achieving greenhouse gas neutrality in the European Union (EU). As renewable electricity production sites in the EU itself might be scarce and relatively expensive, importing e-fuels from the Middle East and North Africa (MENA) could be a complementary and cost-efficient option. Using the energy system model Enertile, supply curves for hydrogen and synthetic methane in the MENA region are determined for the years 2030 and 2050 to evaluate this import option techno-economically. The model optimizes investments in renewable electricity production, e-fuel production chains, and local electricity transport infrastructures. Analyses of renewable electricity generation potentials show that the MENA region in particular has large low-cost solar power potentials. Optimization results in Enertile show for a weighted average cost of capital of 7% that substantial hydrogen production starts above 100 €/MWhH2 in 2030 and above 70 €/MWhH2 in 2050. Substantial synthetic methane production in the model results starts above 170 €/MWhCH4 in 2030 and above 120 €/MWhCH4 in 2050. The most important cost component in both fuel production routes is electricity. Taking into account transport cost surcharges, in Europe synthetic methane from MENA is available above 180 €/MWhCH4 in 2030 and above 130 €/MWhCH4 in 2050. Hydrogen exports from MENA to Europe cost above 120 €/MWhH2 in 2030 and above 90 €/MWhH2 in 2050. If exported to Europe, both e-fuels are more expensive to produce and transport in liquefied form than in gaseous form. A comparison of European hydrogen supply curves with hydrogen imports from MENA for 2050 reveals that imports can only be economically efficient if the two following conditions are met: Firstly, similar interest rates prevail in the EU and MENA; secondly, hydrogen transport costs converge at the cheap end of the range in the current literature. Apart from this, a shortage of land for renewable electricity generation in Europe may lead to hydrogen imports from MENA. This analysis is intended to assist in guiding European industrial and energy policy, planning import infrastructure needs, and providing an analytical framework for project developers in the MENA region

    Regenerative EnergietrÀger zur Sicherung der Grundlast in der Stromversorgung. Endbericht zum Monitoring

    Get PDF
    Der Anteil erneuerbarer Energien an der Stromversorgung Deutschlands steigt in den letzten Jahren mit beeindruckender Geschwindigkeit: er betrĂ€gt bereits ĂŒber 20 %, davon etwa die HĂ€lfte aus fluktuierenden Quellen – vor allem Windkraft und Photovoltaik. Langfristig (bis 2050) wird die Zielsetzung einer nahezu Vollversorgung mit erneuerbaren Energien verfolgt. Damit wird deutlich, dass das System der Stromversorgung in den nĂ€chsten Jahrzehnten einem Umbruch historischen Ausmaßes unterliegen wird. Der TAB-Bericht geht der Frage nach, wie unter diesen Bedingungen die Grundlast in der Stromversorgung weiterhin gesichert werden kann. Diese Frage kann nur in einer Systemperspektive angegangen werden, die alle Ebenen umfasst: von der Erzeugung ĂŒber den Transport und die Verteilung bis hin zum Verbrauch von ElektrizitĂ€t. Daher erweitert sich die Fragestellung dahingehend, wie eine gesicherte Versorgung insgesamt organisiert werden kann. Es zeigt sich, dass das Stromsystem wesentlich flexibler als bisher auf unterschiedliche Einspeise- und Nachfragesituationen reagieren können muss. Optionen zur Steigerung der FlexibilitĂ€t existieren in vielen Bereichen: > Erhöhung der LeistungsfĂ€higkeit der Netze > Flexibilisierung des konventionellen Kraftwerksparks und dessen Betriebsweise > stĂ€rkere Orientierung der Stromproduktion aus erneuerbaren Energien an der Nachfrage > Lastmanagement, sowie nicht zuletzt Errichtung von zusĂ€tzlichen Speichern In allen diesen Handlungsfeldern werden im TAB-Bericht Handlungsoptionen identifiziert, wie die öffentliche Hand bzw. die energiepolitischen Akteure in Exekutive und Legislative durch Gestaltung von Rahmenbedingungen dazu beitragen können, dass der anstehende Umbau der Stromversorgung gelingen kann. INHALT ZUSAMMENFASSUNG 5 I. EINLEITUNG 19 II. ELEKTRIZITÄTSVERSORGUNG IN DEUTSCHLAND 23 1. Ausbauziele und Szenarien fĂŒr RES-E 25 2. Grundlast und gesicherte Versorgung 29 III. STROMNETZE 39 1. Erweiterung der NetzkapazitĂ€t 39 1.1 Optimierung des Netzbetriebs 39 1.2 Massnahmen zur NetzverstĂ€rkung 40 1.3 Netzausbau 42 2. Netzausbaubedarf und Kosten 44 2.1 Deutschland 45 2.2 EuropĂ€ische Perspektive 54 2.3 TranseuropĂ€isches Supergrid 56 IV. SPEICHER UND WEITERE FLEXIBILISIERUNGSOPTIONEN 63 1. Speicher 64 1.1 Speicherbedarf 66 1.2 Speicherkosten 68 1.3 Speichertechnologien 70 2. Weitere Flexibilisierungsoptionen 83 2.1 Biogas 83 2.2 WĂ€rme als Stromsenke – Verbindung zum WĂ€rmesektor 86 2.3 Lastmanagement 88 2.4 Ausbau des Stromaustausches mit Norwegen 92 2.5 Regenerative Kombi-/Hybridkraftwerke 94 3. Speicher und weitere Flexibilisierungsoptionen: Zwischenfazit 97 V. SZENARIENANALYSE 99 1. Vorgehensweise 99 2. Bestimmung der Einspeiseprofile im Referenzjahr 100 3. Szenariodarstellung 101 4. Situation des Stromversorgungsystems ohne Flexibilisierungsoptionen 103 5. Begrenzungen und Flexibilisierungsoptionen 106 5.1 Systemdienstleistungen 107 5.2 Bestehende Flexibilisierungsoptionen 108 5.3 Geplanter Ausbau der bestehenden Flexibiliersungsoptionen bis 2020 109 6. Parametrisierung der Flexibilisierungsoptionen 111 6.1 Beschreibung des Modellierungsansatzes 112 6.2 Ergebnisse zur GlĂ€ttung der Residuallast 113 6.3 Ergebnisse zur GlĂ€ttung der RES-E-Einspeisung 115 6.4 NetzengpĂ€sse als weitere Begrenzung 118 7. Kernergebnisse der Analyse 118 VI. INTERNATIONALE ERFAHRUNGEN 121 1. DĂ€nemark 122 2. Iberische Halbinsel 124 3. Vergleich mit Deutschland 125 VII. HANDLUNGSFELDER UND HANDLUNGSOPTIONEN 129 1. NetzengpĂ€sse und Netzausbau 129 2. Konventionelle Kraftwerke 131 3. Flexibilisierungsoptionen 133 4. Regelmarkt 137 5. Strommarktdesign 138 6. EuropĂ€ische Kooperation 138 VIII. LITERATUR 139 1. In Auftrag gegebene Gutachten 139 2. Weitere Literatur 139 IX. ANHANG 153 1. Tabellenverzeichnis 153 2. Abbildungsverzeichnis 15

    The role of hydrogen in a greenhouse gas-neutral energy supply system in Germany

    Get PDF
    Hydrogen is widely considered to play a pivotal role in successfully transforming the German energy system, but the German government\u27s current “National Hydrogen Strategy” does not specify how hydrogen utilization, production, storage or distribution will be implemented. Addressing key uncertainties for the German energy system\u27s path to greenhouse gas-neutrality, this paper examines hydrogen in different scenarios. This analysis aims to support the concretization of the German hydrogen strategy. Applying a European energy supply model with strong interactions between the conversion sector and the hydrogen system, the analysis focuses on the requirements for geological hydrogen storages and their utilization over the course of a year, the positioning of electrolyzers within Germany, and the contributions of hydrogen transport networks to balancing supply and demand. Regarding seasonal hydrogen storages, the results show that hydrogen storage facilities in the range of 42 TWhH2 to 104 TWhH2 are beneficial to shift high electricity generation volumes from onshore wind in spring and fall to winter periods with lower renewable supply and increased electricity and heat demands. In 2050, the scenario results show electrolyzer capacities between 41 GWel and 75 GWel in Germany. Electrolyzer sites were found to follow the low-cost renewable energy potential and are concentrated on the North Sea and Baltic Sea coasts with their high wind yields. With respect to a hydrogen transport infrastructure, there were two robust findings: One, a domestic German hydrogen transport network connecting electrolytic hydrogen production sites in northern Germany with hydrogen demand hubs in western and southern Germany is economically efficient. Two, connecting Germany to a European hydrogen transport network with interconnection capacities between 18 GWH2 and 58 GWH2 is cost-efficient to meet Germany\u27s substantial hydrogen demand

    An optimal mix of conventional power systems in the presence of renewable energy: A new design for the German electricity market

    Get PDF
    In this paper we develop a new market design for the German electricity market. Our new market design simultaneously ensures security of energy supply and ongoing expansion of renewable energy (RE). The methodological approach applied considers the special challenges resulting from the intermittent nature of RE ‒ we simulate developments in the German electricity market between 2015 and 2034 and differentiate across various power plant technologies according to their ability to flexibly react to changes in the residual load. In theory, a composition of power plants that is optimally adapted to residual load always leads to the most cost efficient supply of electricity. However, our empirical analysis demonstrates that this does not necessarily lead to an improved market environment, both in terms of power plant profitability as well as uninterrupted power supply

    Wirkung der Maßnahmen der Bundesregierung innerhalb der Zielarchitektur zum Umbau der Energieversorgung

    Get PDF
    Um die weitere Entwicklung der Energiewende zu gestalten, wurde mit dem Ersten Fortschrittsbericht zur Energiewende eine Strukturierung der verschiedenen Energiewendeziele nach Sektoren und Kategorien vorgenommen und in eine Hierarchie nach Strategie- und Steuerungsebene gebracht. Diese Strukturierung der Ziele wird in dieser Studie (und auch darĂŒber hinaus) als Zielarchitektur bezeichnet. In der vorliegenden Studie werden die Wirkungen der Instrumente innerhalb der Zielarchitektur und ihr Zusammenspiel zur Erreichung der energiepolitischen Ziele analysiert. Auf Basis der erzielten Ergebnisse wird die Zielarchitektur im Hinblick auf die Erreichung der energie- und klimapolitischen Ziele sowie einer weiteren Optimierung der Energiewende hin untersucht. Dabei sollen insbesondere anhand der beiden Leitkriterien Kosteneffizienz und Systemintegration mögliche Korridore fĂŒr Steuerungsziele wie auch Flexibilisierungsoptionen der Ziele identifiziert werden
    • 

    corecore