2,300 research outputs found

    Methods of Regularities Searching Based on Optimal Partitioning

    Get PDF
    The purpose of discussed optimal valid partitioning (OVP) methods is uncovering of ordinal or continuous explanatory variables effect on outcome variables of different types. The OVP approach is based on searching partitions of explanatory variables space that in the best way separate observations with different levels of outcomes. Partitions of single variables ranges or two-dimensional admissible areas for pairs of variables are searched inside corresponding families. Statistical validity associated with revealed regularities is estimated with the help of permutation test repeating search of optimal partition for each permuted dataset. Method for output regularities selection is discussed that is based on validity evaluating with the help of two types of permutation tests

    About New Pattern Recognition Method for the Universal Program System “Recognition”

    Get PDF
    In this work the new pattern recognition method based on the unification of algebraic and statistical approaches is described. The main point of the method is the voting procedure upon the statistically weighted regularities, which are linear separators in two-dimensional projections of feature space. The report contains brief description of the theoretical foundations of the method, description of its software realization and the results of series of experiments proving its usefulness in practical tasks

    Experimental Performance of a Quantum Simulator: Optimizing Adiabatic Evolution and Identifying Many-Body Ground States

    Full text link
    We use local adiabatic evolution to experimentally create and determine the ground state spin ordering of a fully-connected Ising model with up to 14 spins. Local adiabatic evolution -- in which the system evolution rate is a function of the instantaneous energy gap -- is found to maximize the ground state probability compared with other adiabatic methods while only requiring knowledge of the lowest N\sim N of the 2N2^N Hamiltonian eigenvalues. We also demonstrate that the ground state ordering can be experimentally identified as the most probable of all possible spin configurations, even when the evolution is highly non-adiabatic

    Four-gap glass RPC as a candidate to a large area thin time-of-flight detector

    Get PDF
    A four-gap glass RPC with 0.3mm gap size was tested with hadron beam as a time-of-flight detector having a time resolution of ~ 100ps. A thickness of the detector together with front-end electronics is ~ 12mm. Results on time resolution dependently on a pad size are presented. This paper contains first result on the timing RPC (with ~ 100ps resolution) having a strip read-out. Study has been done within the HARP experiment (CERN-PS214) R&D work. A obtaned data can be useful if a design of a large area thin timing detector has to be done.Comment: 18 pages, 13 figure

    Quantum Catalysis of Magnetic Phase Transitions in a Quantum Simulator

    Full text link
    We control quantum fluctuations to create the ground state magnetic phases of a classical Ising model with a tunable longitudinal magnetic field using a system of 6 to 10 atomic ion spins. Due to the long-range Ising interactions, the various ground state spin configurations are separated by multiple first-order phase transitions, which in our zero temperature system cannot be driven by thermal fluctuations. We instead use a transverse magnetic field as a quantum catalyst to observe the first steps of the complete fractal devil's staircase, which emerges in the thermodynamic limit and can be mapped to a large number of many-body and energy-optimization problems.Comment: New data in Fig. 3, and much of the paper rewritte

    Coherent Imaging Spectroscopy of a Quantum Many-Body Spin System

    Full text link
    Quantum simulators, in which well controlled quantum systems are used to reproduce the dynamics of less understood ones, have the potential to explore physics that is inaccessible to modeling with classical computers. However, checking the results of such simulations will also become classically intractable as system sizes increase. In this work, we introduce and implement a coherent imaging spectroscopic technique to validate a quantum simulation, much as magnetic resonance imaging exposes structure in condensed matter. We use this method to determine the energy levels and interaction strengths of a fully-connected quantum many-body system. Additionally, we directly measure the size of the critical energy gap near a quantum phase transition. We expect this general technique to become an important verification tool for quantum simulators once experiments advance beyond proof-of-principle demonstrations and exceed the resources of conventional computers

    Quantum Control of Qubits and Atomic Motion Using Ultrafast Laser Pulses

    Full text link
    Pulsed lasers offer significant advantages over CW lasers in the coherent control of qubits. Here we review the theoretical and experimental aspects of controlling the internal and external states of individual trapped atoms with pulse trains. Two distinct regimes of laser intensity are identified. When the pulses are sufficiently weak that the Rabi frequency Ω\Omega is much smaller than the trap frequency \otrap, sideband transitions can be addressed and atom-atom entanglement can be accomplished in much the same way as with CW lasers. By contrast, if the pulses are very strong (\Omega \gg \otrap), impulsive spin-dependent kicks can be combined to create entangling gates which are much faster than a trap period. These fast entangling gates should work outside of the Lamb-Dicke regime and be insensitive to thermal atomic motion.Comment: 16 pages, 15 figure

    Practical trapped-ion protocols for universal qudit-based quantum computing

    Full text link
    The notion of universal quantum computation can be generalized to multi-level qudits, which offer advantages in resource usage and algorithmic efficiencies. Trapped ions, which are pristine and well-controlled quantum systems, offer an ideal platform to develop qudit-based quantum information processing. Previous work has not fully explored the practicality of implementing trapped-ion qudits accounting for known experimental error sources. Here, we describe a universal set of protocols for state preparation, single-qudit gates, a new generalization of the M\o{}lmer-S\o{}rensen gate for two-qudit gates, and a measurement scheme which utilizes shelving to a meta-stable state. We numerically simulate known sources of error from previous trapped ion experiments, and show that there are no fundamental limitations to achieving fidelities above 99%99\% for three-level qudits encoded in 137Ba+^{137}\mathrm{Ba}^+ ions. Our methods are extensible to higher-dimensional qudits, and our measurement and single-qudit gate protocols can achieve 99%99\% fidelities for five-level qudits. We identify avenues to further decrease errors in future work. Our results suggest that three-level trapped ion qudits will be a useful technology for quantum information processing

    Cold Matter Assembled Atom-by-Atom

    Get PDF
    The realization of large-scale fully controllable quantum systems is an exciting frontier in modern physical science. We use atom-by-atom assembly to implement a novel platform for the deterministic preparation of regular arrays of individually controlled cold atoms. In our approach, a measurement and feedback procedure eliminates the entropy associated with probabilistic trap occupation and results in defect-free arrays of over 50 atoms in less than 400 ms. The technique is based on fast, real-time control of 100 optical tweezers, which we use to arrange atoms in desired geometric patterns and to maintain these configurations by replacing lost atoms with surplus atoms from a reservoir. This bottom-up approach enables controlled engineering of scalable many-body systems for quantum information processing, quantum simulations, and precision measurements.Comment: 12 pages, 9 figures, 3 movies as ancillary file
    corecore