144 research outputs found

    Performance of tantalum-tungsten alloy selective emitters in thermophotovoltaic systems

    Get PDF
    A tantalum tungsten solid solution alloy, Ta 3% W, based 2D photonic crystal (PhC) was designed and fabricated for high-temperature energy conversion applications. Ta 3% W presents advantages compared to the non-alloys as it combines the better high-temperature thermomechanical properties of W with the more compliant material properties of Ta, allowing for a direct system integration path of the PhC as selective emitter/absorber into a spectrum of energy conversion systems. Indeed metallic PhCs are promising as high performance selective thermal emitters for thermophotovoltaics (TPV), solar thermal, and solar TPV applications due to the ability to tune their spectral properties and achieve highly selective emission. A 2D PhC was designed to have high spectral selectivity matched to the bandgap of a TPV cell using numerical simulations and fabricated using standard semiconductor processes. The emittance of the Ta 3% WPhC was obtained from near-normal reectance measurements at room temperature before and after annealing at 1200 °C for 24h in vacuum with a protective coating of 40 nm HfO[subscript 2], showing high selectivity in agreement with simulations. SEM images of the cross section of the PhC prepared by FIB confirm the structural stability of the PhC after anneal, i.e. the coating effectively prevented structural degradation due to surface diffusion. The mechanical and thermal stability of the substrate was characterized as well as the optical properties of the fabricated PhC. To evaluate the performance of the selective emitters, the spectral selectivity and useful emitted power density are calculated as a function of operating temperature. At 1200 °C, the useful emitted irradiance is selectively increased by a factor of 3 using the selective emitter as compared to the non-structured surface. All in all, this paper demonstrates the suitability of 2D PhCs fabricated on polycrystalline Ta-W substrates with an HfO[subscript 2] coating for TPV applications.Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract DAAD-19-02-D0002)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-07-D000)United States. Dept. of Energy. Office of Science (Solid-State Solar-Thermal Energy Conversion Center Grant DE-SC0001299

    Multiple Phosphatidylinositol 3-Kinases Regulate Vaccinia Virus Morphogenesis

    Get PDF
    Poxvirus morphogenesis is a complex process that involves the successive wrapping of the virus in host cell membranes. We screened by plaque assay a focused library of kinase inhibitors for those that caused a reduction in viral growth and identified several compounds that selectively inhibit phosphatidylinositol 3-kinase (PI3K). Previous studies demonstrated that PI3Ks mediate poxviral entry. Using growth curves and electron microscopy in conjunction with inhibitors, we show that that PI3Ks additionally regulate morphogenesis at two distinct steps: immature to mature virion (IMV) transition, and IMV envelopment to form intracellular enveloped virions (IEV). Cells derived from animals lacking the p85 regulatory subunit of Type I PI3Ks (p85α−/−β−/−) presented phenotypes similar to those observed with PI3K inhibitors. In addition, VV appear to redundantly use PI3Ks, as PI3K inhibitors further reduce plaque size and number in p85α−/−β−/− cells. Together, these data provide evidence for a novel regulatory mechanism for virion morphogenesis involving phosphatidylinositol dynamics and may represent a new therapeutic target to contain poxviruses

    The Membrane Fusion Step of Vaccinia Virus Entry Is Cooperatively Mediated by Multiple Viral Proteins and Host Cell Components

    Get PDF
    For many viruses, one or two proteins allow cell attachment and entry, which occurs through the plasma membrane or following endocytosis at low pH. In contrast, vaccinia virus (VACV) enters cells by both neutral and low pH routes; four proteins mediate cell attachment and twelve that are associated in a membrane complex and conserved in all poxviruses are dedicated to entry. The aim of the present study was to determine the roles of cellular and viral proteins in initial stages of entry, specifically fusion of the membranes of the mature virion and cell. For analysis of the role of cellular components, we used well characterized inhibitors and measured binding of a recombinant VACV virion containing Gaussia luciferase fused to a core protein; viral and cellular membrane lipid mixing with a self-quenching fluorescent probe in the virion membrane; and core entry with a recombinant VACV expressing firefly luciferase and electron microscopy. We determined that inhibitors of tyrosine protein kinases, dynamin GTPase and actin dynamics had little effect on binding of virions to cells but impaired membrane fusion, whereas partial cholesterol depletion and inhibitors of endosomal acidification and membrane blebbing had a severe effect at the later stage of core entry. To determine the role of viral proteins, virions lacking individual membrane components were purified from cells infected with members of a panel of ten conditional-lethal inducible mutants. Each of the entry protein-deficient virions had severely reduced infectivity and except for A28, L1 and L5 greatly impaired membrane fusion. In addition, a potent neutralizing L1 monoclonal antibody blocked entry at a post-membrane lipid-mixing step. Taken together, these results suggested a 2-step entry model and implicated an unprecedented number of viral proteins and cellular components involved in signaling and actin rearrangement for initiation of virus-cell membrane fusion during poxvirus entry

    Molecular dynamics simulations of the growth of poly(chloro-para-xylylene) films

    Get PDF
    Parylene C, poly(chloro-para-xylylene) is the most widely used member of the parylene family due to its excellent chemical and physical properties. In this work we analyzed the formation of the parylene C film using molecular mechanics and molecular dynamics methods. A five unit chain is necessary to create a stable hydrophobic cluster and to adhere to a covered surface. Two scenarios were deemed to take place. The obtained results are consistent with a polymer film scaling growth mechanism and contribute to the description of the dynamic growth of the parylene C polymer

    Whole Cell Cryo-Electron Tomography Reveals Distinct Disassembly Intermediates of Vaccinia Virus

    Get PDF
    At each round of infection, viruses fall apart to release their genome for replication, and then reassemble into stable particles within the same host cell. For most viruses, the structural details that underlie these disassembly and assembly reactions are poorly understood. Cryo-electron tomography (cryo-ET), a unique method to investigate large and asymmetric structures at the near molecular resolution, was previously used to study the complex structure of vaccinia virus (VV). Here we study the disassembly of VV by cryo-ET on intact, rapidly frozen, mammalian cells, infected for up to 60 minutes. Binding to the cell surface induced distinct structural rearrangements of the core, such as a shape change, the rearrangement of its surface spikes and de-condensation of the viral DNA. We propose that the cell surface induced changes, in particular the decondensation of the viral genome, are a prerequisite for the subsequent release of the vaccinia DNA into the cytoplasm, which is followed by its cytoplasmic replication. Generally, this is the first study that employs whole cell cryo-ET to address structural details of pathogen-host cell interaction

    A Method for the Generation of Ectromelia Virus (ECTV) Recombinants: In Vivo Analysis of ECTV vCD30 Deletion Mutants

    Get PDF
    Ectromelia virus (ECTV) is the causative agent of mousepox, a lethal disease of mice with similarities to human smallpox. Mousepox progression involves replication at the initial site of infection, usually the skin, followed by a rapid spread to the secondary replicative organs, spleen and liver, and finally a dissemination to the skin, where the typical rash associated with this and other orthopoxviral induced diseases appears. Case fatality rate is genetically determined and reaches up to 100% in susceptible mice strains. Like other poxviruses, ECTV encodes a number of proteins with immunomodulatory potential, whose role in mousepox progression remains largely undescribed. Amongst these is a secreted homologue of the cellular tumour necrosis factor receptor superfamily member CD30 which has been proposed to modulate a Th1 immune response in vivo
    corecore