2 research outputs found

    Secrecy Throughput Maximization for Full-Duplex Wireless Powered IoT Networks under Fairness Constraints

    Full text link
    In this paper, we study the secrecy throughput of a full-duplex wireless powered communication network (WPCN) for internet of things (IoT). The WPCN consists of a full-duplex multi-antenna base station (BS) and a number of sensor nodes. The BS transmits energy all the time, and each node harvests energy prior to its transmission time slot. The nodes sequentially transmit their confidential information to the BS, and the other nodes are considered as potential eavesdroppers. We first formulate the sum secrecy throughput optimization problem of all the nodes. The optimization variables are the duration of the time slots and the BS beamforming vectors in different time slots. The problem is shown to be non-convex. To tackle the problem, we propose a suboptimal two stage approach, referred to as sum secrecy throughput maximization (SSTM). In the first stage, the BS focuses its beamforming to blind the potential eavesdroppers (other nodes) during information transmission time slots. Then, the optimal beamforming vector in the initial non-information transmission time slot and the optimal time slots are derived. We then consider fairness among the nodes and propose max-min fair (MMF) and proportional fair (PLF) algorithms. The MMF algorithm maximizes the minimum secrecy throughput of the nodes, while the PLF tries to achieve a good trade-off between the sum secrecy throughput and fairness among the nodes. Through numerical simulations, we first demonstrate the superior performance of the SSTM to uniform time slotting and beamforming in different settings. Then, we show the effectiveness of the proposed fair algorithms

    Data Offloading in Load Coupled Networks: A Utility Maximization Framework

    Get PDF
    Abstract-We provide a general framework for the problem of data offloading in a heterogeneous wireless network, where some demand of cellular users is served by a complementary network. The complementary network is either a small-cell network that shares the same resources as the cellular network, or a WiFi network that uses orthogonal resources. For a given demand served in a cellular network, the load, or the level of resource usage, of each cell depends in a non-linear manner on the load of other cells due to the mutual coupling of interference seen by one another. With load coupling, we optimize the demand to be served in the cellular or the complementary networks, so as to maximize a utility function. We consider three representative utility functions that balance, to varying degrees, the revenue from serving the users vs the user fairness. We establish conditions for which the optimization problem has a feasible solution and is convex, and hence tractable to numerical computations. Finally, we propose a strategy with theoretical justification to constrain the load to some maximum value, as required for practical implementation. Numerical studies are conducted for both under-loaded and over-loaded networks
    corecore