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Data Offloading in Load Coupled Networks:
A Utility Maximization Framework

Chin Keong Ho, Member, IEEE, Di Yuan, Member, IEEE, and Sumei Sun, Senior Member, IEEE

Abstract—We provide a general framework for the problem of
data offloading in a heterogeneous wireless network, where some
demand of cellular users is served by a complementary network.
The complementary network is either a small-cell network that
shares the same resources as the cellular network, or a WiFi
network that uses orthogonal resources. For a given demand
served in a cellular network, the load, or the level of resource
usage, of each cell depends in a non-linear manner on the
load of other cells due to the mutual coupling of interference
seen by one another. With load coupling, we optimize the
demand to be served in the cellular or the complementary
networks, so as to maximize a utility function. We consider three
representative utility functions that balance, to varying degrees,
the revenue from serving the users vs the user fairness. We
establish conditions for which the optimization problem has a
feasible solution and is convex, and hence tractable to numerical
computations. Finally, we propose a strategy with theoretical
justification to constrain the load to some maximum value, as
required for practical implementation. Numerical studies are
conducted for both under-loaded and over-loaded networks.

Index Terms—Data offloading, load coupling, small-cell net-
work, WiFi network, feasibility, convexity.

I. INTRODUCTION

FUELED by mobile multimedia applications, the demand
for mobile data is rising rapidly. Data traffic is also

projected to grow at a compound annual growth rate of 78%
from 2011 to 2016 [1]. In practice, cellular networks and
the conventional infrastructure cannot grow as fast to match
the increase in demand. One promising solution currently
considered by cellular operators is to employ data offloading,
also known as mobile cellular traffic offloading [2], [3]. In
data offloading, the data of cellular users is intentionally
delivered by complementary networks, namely small cells
such as Picocells and Femtocells, or WiFi networks. This
reduces the data demand on the regular cellular networks and
hence eases traffic congestion.

In a cellular network, frequency reuse is employed, and
thus base stations using the same frequency band interfere
with one another. We refer to the average level of resource
usage in the time-frequency domain of a cell as its load.
To optimize the overall system performance, load balancing
has to be performed across various networks in the context
of data offloading [4]. Due to the mutual coupling of the
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interference and the requirement to serve a specific demand
for each cell, the load of a cell depends on the load of
other cells. This leads to a non-linear coupling relation of
the cells’ loads, making analytical characterization of the load
challenging. This motivates the use of new approaches and
different theoretical tools to analyze and optimize the system
performance.

Recently, an analytical signal-to-interference-and-noise-
ratio (SINR) model that takes into account the load of each cell
is employed [5], [6], resulting in a non-linear load coupling
equation for which theoretical analysis is obtained in [7]. This
load coupling equation has also been shown to give a good
approximation for more complicated load models in cellular
systems that capture the dynamic nature of arrivals and service
periods of data flows in the network, especially at high data
arrival rates [8]. For example, the load obtained by the load
coupling equation is within 10% of the exact load obtained,
if the normalized arrival rate of the data is more than 60%.

In this paper, we consider two separate scenarios in which
the cellular network offloads to a complementary network.
The complementary network is either a small cell or a WiFi
network. The small-cell network shares the network resources
with the cellular network, whereas the WiFi network uses
orthogonal network resources to that of the cellular network.
The performance of serving users in a particular network is
measured by three representative types of utility functions, all
of which are related to the network operator’s revenue, but
differ in the degree of accounting for user fairness. To model
the inter-dependency of the load, we employ the load coupling
equation in [5]–[8].

In this paper, we extend the theoretical insights in [9], as
well as present new algorithmic solutions and results for utility
maximization with data offloading. Our contributions are as
follows. Based on a unified framework for the problem of data
offloading, we obtain fundamental properties on the computa-
tion, feasibility, and monotonicity of the load-coupling system.
For a given (small cell or WiFi) complementary network,
we formulate a utility-maximization problem in which the
users’ demand can be served in either the (regular) cellular
network or the complementary network, or concurrently in
both networks. We establish conditions for which the opti-
mization problem has a feasible solution and is convex, and
hence tractable to numerical computations. We also propose
a strategy to constrain the load to some maximum value, as
required for practical implementation, and provide theoretical
justification for the proposed algorithm. Numerical results are
obtained for both under-loaded and over-loaded networks, and
can serve as a reference for the design of data offloading
systems in practice. The main tool we employ for analysis
is based on the Perron-Frobenius theorem and other related
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results [10].
Section II gives the system model of the load-coupled

network. Section III presents the fundamental properties of
the load-coupled system. Section IV formulates the data
offloading problem. Convexity analysis and an algorithm to
constrain the maximum load are also given. Numerical results
are given in Section V. Section VI concludes the paper.

Notations: We denote a (tall) vector by a bold lower case
letter, say a. We denote a matrix by a bold capital letter,
say A, and denote its (i, j)th element by its lower case aij .
We denote a positive matrix as A > 0 if aij > 0 for all
i, j. Similarly, we denote a non-negative matrix as A ≥ 0 if
aij ≥ 0 for all i, j. Similar definitions apply to vectors.

II. SYSTEM MODEL

We consider a cellular network consisting of n base sta-
tions that can interfere with each other. We focus on the
downlink communication scenarios where base station i ∈
N , {1, · · · , n} transmits with power pi ≥ 0. We refer
to cell i interchangeably with base station i. For notational
convenience, we collect all power {pi} as vector p > 0.

Each base station i serves one unique group of users in set
Ji, where |Ji| ≥ 1. User j ∈ Ji is served in cell i up to a
maximum rate of Dij nat. Thus, the data can be interpreted
as best-effort or elastic data to be served as much as possible
subject to network conditions. We also allow the users to be
served in a complementary cell, to be introduced next.

A. Data Offloading to Complementary Network

We shall consider data offloading, where the demand of
every user can also be served in a complementary network.
We assume a total of n′ complementary cells in the comple-
mentary network, denoted by the set N ′ = {1, · · · , n′}. Each
complementary cell i transmits with power p′i ≥ 0.

Specifically, we map every regular-cell user j ∈ Ji in the
regular cell i ∈ N uniquely to a (virtual) complementary-
cell user b ∈ J ′a in the complementary cell a ∈ N ′, via the
mapping (a, b) = π(i, j); note that both refers to the same
physical user. We take the demands dij and d′π(i,j) to be
served in the regular and complementary cells, respectively,
as variables to be optimized, subject to the demand constraint

dij + d′π(i,j) ≤ Dij , i ∈ N , j ∈ Ji. (1)

The demand constraint ensures that the total demand served
to each user is not more than the demand Dij requested. This
is because any demand served beyond the requested amount
may not benefit the users, yet consumes additional network
resources at an increased cost for the cellular operator. For
notational convenience, we collect all demands {dij} and
{d′π(i,j)} as vectors d ≥ 0 and d′ ≥ 0, respectively.

We assume there is at least one user j in cell i with dij > 0,
otherwise pi = 0 and so base station i can be omitted; we
make the same assumption for the complementary cells. Thus
without loss of generality, we have pi, p′i > 0.

We consider two types of complementary network, consist-
ing of either only small cells or WiFi cells. For the case of
small-cell offloading, both the regular cellular network and
small-cell network use the same frequency band, hence the

networks interfere with each other. For the case of WiFi
offloading, the frequency band used in the WiFi network is
orthogonal to that of the cellular network, hence there is no
mutual interference. Our model can be easily generalized to
the hybrid case consisting of a mixture of small cells and WiFi
cells, with more cumbersome notations. For ease of exposure,
we do not consider this hybrid case.

B. Load Coupling Model

We first consider the load coupling model for the cellular
network without any complementary network. The extension
to the case with a complementary network is given in Sec-
tion II-C.

Let x = [x1, · · · , xn] be the load of the cellular network,
where 0 ≤ x ≤ 1. The load xi measures the fractional
usage of resource in cell i. In LTE systems, the load can
be interpreted as the expected fraction of the time-frequency
resources that are scheduled to deliver data. We model the
SINR of user j in cell i as [5]–[8]

SINRij(x) =
pigij∑

k∈N\{i} pkgkjxk + σ2
(2)

where σ2 represents the noise power and gij is the channel
gain (or channel power) from base station i to user j; note that
gkj , k 6= i, here represents the channel gain from interfering
base station k. The SINR model (2) gives good approximation
of more complicated cellular models [8]. Intuitively, xk can
be interpreted as the probability of receiving interference from
cell k on all the sub-carriers of the resource unit. Thus,
the combined term (pkgkjxk) is interpreted as the expected
interference with expectation taken over time and frequency
for all transmissions.

Since Gaussian-signalling is the worst-case noise distribu-
tion for mutual information [11], an achievable rate is given by
rij = B log(1 + SINRij) nat/s per resource unit, where B is
the bandwidth for one resource unit and log is the natural
logarithm. To deliver a demand of dij nat for user j, the
ith base station thus uses xij , dij/rij resource units. We
assume that at total M (time and frequency) resource units
are available. Summing the resource units over all users in
cell i, we get the load for the cell as

xi =
∑
j∈Ji

xij/M (3)

=
1

MB

∑
j∈Ji

dij
log (1 + SINRij(x))

, fi(x) (4)

for i ∈ N . For notational simplicity, we normalize dij and rij
by the total amount of resource units MB. Hence, without
loss of generality we let MB = 1 in (4).

Let f(x) = [f1(x), · · · , fn(x)]T . In vector form, we have

x = f(x;d,p) (5)

where we have made the dependence of the load on the
demand d and power p explicit. We call (5) the non-linear
load coupling equation (NLCE), as the load x appears in both
sides of the equation and cannot be readily solved in closed-
form. To emphasize that a load is a solution of the NLCE,
we denote the load as x? when necessary. We say the load
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x? to be feasible if x? satisfies the NLCE and x? ≥ 0. An
algorithm that ensures that the load is also less than one (by
reducing the demand) shall be considered in Section IV-E.

C. Load Coupling with Complementary Network

For the cellular network with a small-cell network, the two
networks operate in the same frequency band and can be
treated as one integrated network. Specifically, the set of n
base stations in the regular network is combined with the set
of n′ base stations in the small-cell network to form a larger
set of base stations of size n+n′. All base stations can interfere
with one another.

For the cellular network with a WiFi network, the two
networks operate in different frequency bands. We assume
the WiFi network also submits to the load-coupling system
relation. That is, the NLCE holds for the cellular network
as before, and also holds separately for the WiFi network
by replacing x,d,p with the corresponding WiFi quantities
denoted by x′,d′,p′.

We note that regardless of whether the complementary
network is a small cell or WiFi network, the allocation of
{dij , d′π(ij)} is coupled due to the constraint dij + d′π(ij) ≤
Dij .

III. FEASIBLE LOAD: FUNDAMENTAL PROPERTIES

We explore fundamental properties related to NLCE,
namely, computation, existence and monotonicity of the load
solution. For clarity, we consider the regular cellular net-
work without any complementary network; the results extend
straightforwardly to the case with complementary network via
the discussion in Section II-C.

A. Computation

Consider the following iterative algorithm. Starting from an
arbitrary initial load x0 > 0, define the kth iteration solution
as

xk = f(xk−1;d,p) (6)

for k = 1, 2, · · · ,K, where K is the total number of iterations.
Lemma 1 ensures that xK converges to the feasible load x?

in the NLCE for large K. The proof relies on the property of
the standard interference function as defined in [12].

Lemma 1: Suppose a feasible load x? exists for the NLCE
(5). Then xK converges to the unique fixed point solution x?

as K →∞.
Proof: We sketch the proof given in [8]. After establishing

that f(·) is a standard interference function, Theorem 2 in [12]
is applied to obtain the desired result.

Remark 1 (Asynchronous iteration): The iterative algorithm
in (6) is said to be synchronous [12] because all elements in
vector xk are obtained simultaneously. We may also consider
the asynchronous version, in which a set of one or more
elements are updated multiple times followed sequentially by
other sets until all cells are updated at least once. By using
Theorem 4 in [12], we also obtain the convergence property
in Lemma 1 with asynchronous iterations.

The observation in Remark 1 is useful for implementation
in practice, because the base stations can adapt their load in a

distributed manner, and yet a feasible load can be obtained af-
ter sufficient number of iterations. Moreover, the asynchronous
iteration will be used from an analytical viewpoint later, in the
proof of Theorem 2.

B. Existence

Before we compute the load as in Lemma 1, we need
to check if a feasible load exists. Lemma 2 next states that
feasibility can be checked by a simpler problem via a linear
counterpart to the NLCE.

Lemma 2: Given d and p, a feasible load x? ≥ 0 exists for
the NLCE (5) if and only if a solution x ≥ 0 exists in

x = H(d,p) · x+ c(d,p). (7)

Here, c(d,p) , f(0n;d,p), where 0n is the length-n all-
zero vector, and H(d,p) ≥ 0 is the real matrix with (i, k)th
element

hik =

{
0, if i = k;
(pk/pi)

∑
j∈Ji

gkjdij/gij , if i 6= k
(8)

for 1 ≤ i ≤ n and 1 ≤ k ≤ n. Note that c(d,p) > 0 because
at least one dij in cell i is positive.

Proof: From Theorem 8 and Theorem 11 in [7].
Next, we treat d and p as variables to be optimized, so as

to study how they affect the feasibility of the load. Our main
result is stated in Theorem 1 below, which gives the necessary
and sufficient condition for a feasible x? to exist.

We make some preparation before stating the theorem. Let
Λ(d) ≥ 0 be the n-by-n real matrix with the (i, k)th element

λik =

{
0, if i = k;∑
j∈Ji

gkjdij/gij , if i 6= k
(9)

for 1 ≤ i ≤ n and 1 ≤ k ≤ n. We can therefore express the
matrix H(d,p) in (7) as

H(d,p) = diag(p) ·Λ(d) · diag(p)−1 (10)

where diag(p) denotes the diagonal matrix with diagonal
elements p. The effects of p and d are thus decoupled into
three matrices, and so (7) becomes

x̃ = Λ(d)x̃+ c̃(p,d) (11)

where x̃ , diag(p)−1x and c̃(d,p) , diag(p)−1c(d,p).
Theorem 1: Given p > 0 and d ≥ 0, a feasible load x? ≥ 0

for the NLCE (5) exists if and only if

r(Λ(d)) < 1 (12)

where r(Λ) is the spectral radius of matrix Λ, defined as the
absolute value of the largest eigenvalue of Λ.

Proof: By Lemma 2, it is sufficient to consider the linear
counterpart (7), or equivalently (11). Since p > 0, every base
station i serves some positive demand and so

∑
j∈Ji

dij > 0.
Thus, Λ(d) ≥ 0 and c(d,p) > 0. Hence, applying the Perron-
Frobenius theorem in [10, Theorem A.51] to (11), we conclude
that (12) is necessary and sufficient for a feasible x̃ to exist
in (11). Theorem 1 follows as p > 0.

From (12), the existence of a feasible load depends only on
the demand vector d, but not on the power p. This suggests the
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importance of data offloading by varying the demand, which
is made explicit in Corollary 1.

Corollary 1: Suppose a feasible load does not exist for a
given demand d ≥ 0 and power p > 0. Then no feasible load
can exist by varying only p. However, a feasible load always
exist by varying d.

Proof: The spectral radius r(Λ(d)) depends only on the
demand d. Hence, changing the power p does not affect the
existence of the feasible load. But scaling the demand vector
uniformly by a positive factor allows the spectral radius to
be scaled also by the same factor. Hence the spectral radius
can always be made smaller than one by reducing the demand
such that a feasible load exists.

Motivated by Corollary 1, subsequently we shall focus on
the scenario where only the demand is varied, while the power
is always taken to be fixed and positive.

C. Monotonicity of Load as a Function of Demand
With power fixed, Theorem 2 shows that the load vector

that satisfies the NLCE is a monotonic function of the demand
vector.

Theorem 2: Consider the NLCE (5) with power p fixed.
Given the demand vectors d′ and d with d′ ≥ d and d′ 6= d,
the corresponding NPCE load x′

? and x? satisfy x′
?
> x?.

Proof: We sketch the proof; the details are given in
Appendix A. First, consider the case that only one element of
d′ is strictly greater than d, with all other demand elements
unchanged. Then we employ an asynchronous iteration in
Remark 1 with initial load x?. Upon convergence, we obtain
x′
? which can be shown to satisfy x′

?
> x?. Finally we

consider the case where more than one element of d′ are
strictly greater than d. In the proof, we apply the above
argument successively to each element of the demand vector
where the strict inequality holds.

Theorem 2 also justifies our approach of focusing on a
feasible load vector such that x? ≥ 0. Once feasibility is
established, we can reduce the demand further to ensure that
0 ≤ x? ≤ 1.

IV. DEMAND OFFLOADING

We model the benefit of serving the demand in a network
with offloading via three representative utility functions in
Section IV-A. Next, we pose the optimization problem of
maximizing the sum utility in Section IV-B, where the com-
plementary network is either a WiFi or small-cell network.
Then we investigate the convexity of the solution space, which
affects the difficulty of numerical computations of the optimal
solution, for n = 2 base stations in Section IV-C and for
arbitrary n in Section IV-D. Finally, we propose an algorithm
to limit the maximum optimal load to one in Section IV-E.

As before, we shall consider feasible load such that x? ≥ 0
in this section. In Section IV-E, we shall impose the additional
constraint that the feasible load is less than one, i.e., 0 ≤ x? ≤
1.

A. Utility for Maximization
Our objective is to maximize the sum utility

U sum ,
∑
i∈N

∑
j∈Ji

kijU(dij) + k′π(i,j)U(dπ(i,j)) (13)

where U(d) is the utility function for satisfying demand d. The
positive weights kij and k′π(i,j) take into account the combined
priority of the user and the networks. The utility function
can be used to quantify the value of serving the demand d
to the cellular operator or user in terms of, for instance, the
revenue collected from the access service, and the fairness of
serving the demand of multiple users within each cell type.
We note that the importance of serving in either cell type can
be quantified via the weights kij and k′π(i,j).

To give insights, U(d) is chosen to be the following
representative functions, namely the linear (LIN), logarithmic
(LOG), and double-logarithmic (DLOG) utility functions:

LIN : U(d) = d, (14a)
LOG : U(d) = log(d), (14b)

DLOG : U(d) = log(log(1 + d)). (14c)

The utility functions are monotonically increasing and hence
one-to-one functions. The LIN utility models the scenario
where serving an additional demand unit results in an ad-
ditional unit of utility. For LOG utility, serving an additional
demand unit of a user with a low demand results in more
utility. Intuitively, this results in a fairer demand distribution
among users but could result in a smaller revenue to the
operator as less total demand is served. Thus, the LOG utility
trades revenue maximization with user fairness. The DLOG
utility further emphasizes fairness, because it favours low-
demand users even more. We note that the last two utility
functions would not assign zero demand to any user, because
the sum utility is then negative infinity. The generalization to
a broader class of functions is considered in Remark 3 later.

For exposure, we make the same-demand assumption that
every user j in the same regular cell i is served the same
demand dij = d̃i. Corresponding to the regular-cell user j
in cell i, we denote the complementary-cell user as a(i, j) in
complementary cell b(i, j), i.e., (a(i, j), b(i, j)) = π(i, j). For
the complementary network, we also make the same-demand
assumption, i.e., d′π(i,j) = d̃′a(i,j) for all i, j. In effect, we focus
on varying the cell-level demand vectors d̃ , [d̃1, · · · , d̃n]T
and d̃′ , [d̃′1, · · · , d̃′n′ ]T . From the demand constraint (1), we
get

dij + dπ(i,j) = d̃i + d̃a(i,j) ≤ Dij ,∀j ∈ Ji, i ∈ N . (15)

Since all cells are active with power vector p > 0, we also
have d̃ > 0 and d̃′ > 0.

Remark 2 (Relaxing same-demand assumption): For the
case of LOG utility, the same-demand assumption can be
slightly relaxed. Instead we assume more generally that each
user j ∈ Ji in cell i is allocated a demand of dij = αij d̃i,
where

∑
j∈Ji

αij = 1. Here, αij is a fraction of the total
demand d̃i served in cell i. Thus, the user’s achieved utility
is U(αij d̃i) = log(d̃i)+ log(αij). With αij’s fixed, it suffices
to consider the first term log(d̃i) for the sum utility U sum.
Hence the optimization problem is similar to the case under
the same-demand assumption. In general, however, the same-
demand assumption is required for the subsequent convexity
results to hold.
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B. Optimization Problem

1) WiFi as Complementary Network: We first formulate
the optimization problem with WiFi as the complementary
network. Mathematically, our data offloading problem is

(P0) max
d̃,d̃′

∑
i∈N

∑
j∈Ji

kijU(d̃i) + k′π(i,j)U(d̃′a(i,j)) (16a)

s.t. d̃ ∈ F , {d̃ > 0 : r(Λ(d̃)) < 1} (16b)

d̃′ ∈ F ′ , {d̃′ > 0 : r(Λ′(d̃′)) < 1} (16c)

d̃i + d̃′a(i,j) ≤ Dij , ∀j ∈ Ji, i ∈ N (16d)

where Λ,Λ′ correspond to (9) for the regular cellular network
and the WiFi network, respectively. The constraints (16b),
(16c) follow from Theorem 1 and the discussion for WiFi
network in Section II-C; we call F and F ′ the feasibility sets.
The last constraint is due to (15). We note that a solution
always exists because we can always reduce the demand to
arbitrarily close to zero, so as to satisfy constraints (16b)
and (16c) (see the proof of Corollary 1) and also to satisfy
constraint (16d).

For convenience, we transform d̃i to yi = U(d̃i) for
i ∈ N and let d̃ = [U−1(y1), · · · , U−1(yn)]T , g(y). The
inverse U−1(·) always exists because U(·) is a monotonic
function. Similarly for the WiFi cells, let y′i = U(d̃′i) for
i ∈ N and d̃′ = [U−1(y′1), · · · , U−1(y′n)]T , g(y′). Let
ki ,

∑
j∈Ji

kij . We make similar definitions for y′i and k′i
corresponding to the complementary cells. Our transformed
data offloading problem is then

(P1) max
y,y′

∑
i∈N

kiyi + k′iy
′
i (17a)

s.t. y ∈ F̃ , {y ∈ Yn : r(Λ(g(y))) < 1} (17b)

y′ ∈ F̃ ′ , {y′ ∈ Yn
′
: r(Λ′(g(y′))) < 1} (17c)

U−1(yi) + U−1(y′a(i,j)) ≤ Dij , ∀j ∈ Ji, i ∈ N
(17d)

where Yn of dimension n is defined as the set of positive
vectors for LIN utility, and as the set of real vectors for
LOG and DLOG utilities. Here F̃ (and similarly F̃ ′) is the
transformed feasibility set with complement set denoted as
F̃c = Yn \ F̃ . For LIN utility, Problem P1 is the same as
Problem P0, and thus F̃ = F .

We note that the objective function is always linear in y and
y′. For any of the three utility functions, it can be checked
that the set of ỹ, ỹ′ subject only to (17d) is convex. Now if F̃
(and similarly F̃ ′) is a convex set, P1 is a convex optimization
problem for which numerically efficient solvers exist [13]. In
summary, it is sufficient to obtain conditions for which F̃ is
convex, in order to ascertain if problem P1 is convex.

To account for individual demand constraints imposed by
each network, we may also impose, in Problem P0, additional
constraints on d̃i and d̃′a(i,j) such that the variables do not
exceed some fixed constants. It can be easily checked that
such constraints do not affect the convexity of the solution
space in Problem P1.

2) Small cell as Complementary Network: The optimiza-
tion problem is similar to problem P0, except that the
feasibility sets in (16b) and (16c) are merged into a single

y1

y2

Y1

Y2

0

(a) LIN utility.

y1

y2

Y1

Y2

0

(b) LOG utility.

y1

y2

Y1

Y2

0

(c) DLOG utility.

Fig. 1. Transformed feasibility set (shaded) for different utility objective
functions. After transformation, the objective function is always linear.

feasibility set subject to r(Λ′′(d̃, d̃′)) < 1 where Λ′′ includes
the base stations of both the regular cells and the small cells,
see Section II-C. By similar arguments as before, for the
transformed data offloading problem to be convex, it suffices
to check if F̃ that corresponds to Λ′′(d̃, d̃′) is convex.

C. Two Base Stations

To gain some understanding for the convexity of F̃ , let
us study the case of n = 2 base stations. It can be

verified that if we write Λ(d) =

[
0 β
β′ 0

]
, then the

unit eigenvectors and corresponding eigenvalues of Λ(d) are{
ξ[
√
β,
√
β′]T ,

√
ββ′
}
,
{
[−
√
β,
√
β′]T ,−

√
ββ′
}

with ξ ,
(β + β′)−1/2. The spectral radius can then be obtained in
closed-form as r(Λ(d)) =

√
ββ′. Thus the (non-transformed)

feasibility set F is given by all d̃ = [d̃1, d̃2]
T that satisfies

d̃1d̃2

∑
j∈J1

g2j
g1j

∑
j∈J2

g1j
g2j

 < 1. (18)

Clearly, the feasibility set depends on the channel gains in
a non-linear manner. We note that the optimal (d̃1, d̃2) lies
on the inner boundary of F̃ , since to maximize the objective
function we must choose d̃1 or d̃2, or both, to be as large as
possible. Moreover, the following observations can be made
for the three utility functions.

LIN utility: The transformed feasibility set F̃ = F is
unchanged; see Fig. 1(a). We include constraint (17d) which
can be written as yi ≤ Yi, i = 1, 2; the actual value for Yi
depends on the optimal demand vector for the complementary
network. To maximize the sum utility, clearly the optimal
solution is to assign either y?1 = Y1 or y?2 = Y2, i.e., an
extreme solution. Moreover, the optimal solution is unique.

LOG utility: The transformed feasibility set F̃ , including
the constraint (17d), is a polytope; see Fig. 1(b). To maximize
the objective function k1y1+k2y2, an optimal solution is given
by the boundary extreme solution. This conclusion is similar
to the linear utility case, except that the optimal solution is
unique only if k1 6= k2.

DLOG utility: The transformed feasibility set F̃ , including
the constraint (17d), is strictly convex; see Fig. 1(c). To
maximize the objective fuction k1y1 + k2y2, the optimal
solution is not necessarily an extreme solution, but is always
unique. This suggests the fairest data offloading, as neither of
the demands is likely to be very small.
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In the next section, we shall use more sophisticated ana-
lytical tools to shed further insight on the convexity of the
transformed feasibility set F̃ for any n.

D. Arbitrary Number of Base Stations

For larger n, the spectral radius cannot be computed in
closed-form, and it is expected that the dependence on the
channel gains remains non-linear and complicated. Neverthe-
less, an efficient numerical approach is warranted for arbitrary
number of base stations n. Theorem 3 states the convexity of
the feasibility set F̃ or its complement F̃c.

Theorem 3: The following convexity results hold.
LIN utility: F̃c is convex for n = 2. But F̃c is generally

not convex for n ≥ 3.
LOG utility: F̃ is convex for n = 2. Moreover, F̃ is strictly

convex for n ≥ 3.
DLOG utility: F̃ is strictly convex for any n ≥ 2.

Proof: The proof for n = 2 for all cases was given in
Section IV-C. We now consider the case n ≥ 3 by applying
the results in [10], which are closely related to the well-known
Perron-Frobenius theorem. First, note that we can express

Λ(g(y)) = diag(g(y1), · · · , g(yn)) Λ̃ (19)

where g(yi) is the ith element of g(y) and the (i, k)th element
of Λ̃ is

λ̃ik =

{
0, if i = k;∑
j∈Ji

gkj/gij , if i 6= k
. (20)

LIN utility: We have g(y) = y. Applying [10, Theo-
rem 1.60] known as the linear mapping case to (19), we obtain
that F̃c is in general not convex.
LOG utility: We have g(y) = exp(y). The matrix structure

in (19) is referred to as the exponential mapping case in
[10]. Moreover, Λ̃ and Λ̃Λ̃T are irreducible; see Lemma 3
with definition of irreducibility in the Appendix B. These two
conditions allow us to apply [10, Theorem 1.63] to show that
F̃ is strictly convex for n ≥ 3

DLOG utility: We have g(y) = exp(exp(y)) − 1. The
following inequality holds after some calculus and algebraic
manipulations:

d
∂2U(d)

∂d2
+
∂U(d)

∂d

=
∂U(d)

∂d

(
1− d

1 + d

(
1 +

1

log(1 + d)

))
<
∂U(d)

∂d

(
1− d

1 + d

(
1 +

1

d

))
= 0 (21)

where the above inequality is due to log(1+d) < d for d > 0.
From Lemma 4 in Appendix C with x and f(x) replaced by
d and U(d), respectively, the inverse of U(d), i.e., g(y), is
strictly log-convex. Since all diagonal elements of diag(g(y))
are strictly log-convex, by [10, Corollary 1.46], it follows that
F̃ is strictly convex.

The number of users does not significantly affect the
complexity of the optimization problem P1, due to the same-
demand assumption that we have imposed. Instead, the com-
plexity of the optimization problem depends on n, the number
of transmitters, e.g., base stations or access points. Assuming

LOG or DLOG utility is used, Theorem 3 states that the
feasibility set is convex, and hence the complexity for large
n is still manageable with the use of convex optimization
techniques [13].

Remark 3 (Generalizing Utility Function): Theorem 3 ap-
plies to a more general class of utility function U(d). Specif-
ically, if the utility function satisfies d∂

2U(d)
∂d2 + ∂U(d)

∂d < 0 for
n ≥ 3, then F̃ is strictly convex. We note that DLOG is a
special case, see (21). This conclusion follows immediately
from the proof for Theorem 3, in which Lemma 4 was used
to show that g(y) is strictly log-convex. Moreover, it follows
that g(y) is convex and so the constraint (17d) is convex as
its left-hand side is a sum of convex functions. Hence the
optimization problem P1 is a convex optimization for this
general class of utility functions.

E. Algorithm to Limit Maximum Load

So far in our analysis, we consider feasible load x? ≥ 0,
which holds if the spectral-radius constraint is strictly less than
one. In practice, the load cannot exceed one, due to limited
availability of network resources. To impose a constraint 0 ≤
x? ≤ 1 explicitly in Problem P0 however appears challenging.
Instead, in this section, we propose an iterative algorithm that
reduces the demand such that 0 ≤ x? ≤ 1.

1) Preliminaries: Let us consider the following optimiza-
tion problem that is generalized from Problem P0. Define
Problem Q(ρ), where 0 ≤ ρ ≤ 1 is an arbitrary but
fixed constant, to be the same as Problem P0 but with
the spectral-radius constraints (16b) and (16c) replaced by
r(Λ(g(y))) < ρ and r(Λ′(g(y′))) < ρ, respectively. We
denote the corresponding feasibility sets as F(ρ) and F ′(ρ),
respectively. Clearly, Problem Q(ρ) specializes to Problem P0
if ρ = 1. Corresponding to Problem Q(ρ), the optimal demand
vector and load vector are denoted respectively as d?(ρ) and
x?(ρ) for the regular cellular network, and similarly d′

?
(ρ)

and x′
?
(ρ) for the WiFi network. Finally, we denote the

maximum optimal load as x?max(ρ) , max{x?i (ρ), x′
?
j (ρ), i ∈

N , j ∈ N ′}. Thus, x?(ρ) ≤ 1 if and only if x?max(ρ) ≤ 1.
We note that all the analysis so far for Problem P0 apply

also for Problem Q(ρ), independent of the actual value of
ρ. Thus, the numerical solution for Problem Q(ρ) can be
obtained similarly as for Problem P0. It is useful to note that
x?(ρ) and x?max(ρ) with ρ = 1 correspond to the optimal
values for the special case of Problem P0.

If x?max(1) ≤ 1, then x?(1) is an optimal solution for
Problem P0 and satisfies the required constraint 0 ≤ x ≤ 1.
Henceforth, we assume that x?max(1) > 1. In the following,
we first propose an algorithm such that the final load vector
satisfies 0 ≤ x ≤ 1, followed by the theoretical justifications.

2) Algorithm: To ensure the load is limited by one, we
propose to use the demand vector d?(ρ) corresponding to
the load vector solution x?(ρ) in Problem Q(ρ), where ρ
is determined by the solution of the following optimization
problem:

(P2) max
0≤ρ<1

ρ (22)

s.t. x?max(ρ) ≤ 1. (23)
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Fig. 2. The graph of maximum optimal load x?max and optimal objective
value Usum over ρ. The value ρ? = 0.2694 corresponds to x?max(ρ

?) = 1.

That is, ρ is the largest possible value such that 0 ≤ x?(ρ) ≤
1. In general, x?max(ρ) is not a monotonic function of ρ.
For example, see Fig. 2, where the detailed scenario setup is
described in Section V. Nevertheless, since we have reduced
the optimization to only one variable, an exhaustive search
based on a finely-quantized interval over 0 ≤ ρ < 1 can be
performed to solve Problem P2, where for each ρ Problem
Q(ρ) is solved. This method shall be employed to obtain
numerical results in Section V.

3) Theoretical Basis: The theoretical basis for the above
algorithm stems from Theorem 4 and Theorem 5 below.
Theorem 4 ensures that the highest possible sum utility is
achieved for Problem Q(ρ) if we choose ρ to be as large as
possible. Theorem 5 ensures the existence of a solution in
Problem P2 under the equal-demand assumption.

Theorem 4: Denote the optimal sum utility value for Prob-
lem Q(ρ) as U sum(ρ), 0 ≤ ρ ≤ 1. Then U sum(ρ) is a strictly
increasing function of ρ.

Proof: Let d̃′ = d̃ + e, e ≥ 0. It can be easily
checked from definition (9) that E , Λ(d̃′) − Λ(d̃) ≥ 0,
with equality if and only if e = 0. Similar to the proof
that Λ̃ is irreducible in Lemma 3, it can be shown that
Λ(d̃) ≥ 0 is irreducible. Thus, we can apply Lemma 5 in
Appendix D to get r(Λ(d̃′)) = r(Λ(d̃) + E) ≥ r(Λ(d̃)),
with equality if and only if e = 0. Thus, d̃′ ≥ d̃ if and only
if r(Λ(d̃′)) ≥ r(Λ(d̃)). This implies that the feasibility set
F(ρ) (and similarly for F ′(ρ)) satisfies F(ρ1) ⊂ F(ρ2) for
ρ1 < ρ2. Thus, U sum(ρ1) < U sum(ρ2) for ρ1 < ρ2, i.e.,
U sum(ρ) is a strictly increasing function.

For illustration, we plot the sum utility U sum(ρ) (added by
a constant such that it becomes positive) as a function of ρ
in Fig. 2. In accordance with Theorem 4, the sum utility is
increasing with ρ.

Theorem 5: Consider Problem Q(ρ) where x?max(ρ) > 1 for
ρ = 1. Then there exists an optimal load vector x?(ρ) such
that x?max(ρ) = 1 for some 0 < ρ < 1.

Proof: From the proof of Theorem 4, the feasible set
F̃(ρ) becomes strictly smaller as ρ decreases. From The-
orem 2, the load vector is a monotonic function of the
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6

Fig. 3. Network configuration: base stations, access points and users are
shown with the blue squares, red triangles, and black dots, respectively.

demand vector. Thus, every load vector corresponding to a
demand vector in the feasible set also decreases in value, as
ρ decreases. For sufficiently small ρ → 0, all the elements
of the optimal demand must approach the all-zero vector and
thus x?max → 0. By continuity, there exists x?max = 1 for some
0 < ρ < 1.

For illustration, we plot the maximum optimal load x?(ρ)
as a function of ρ in Fig. 2. We note that, in contrast to
U sum(ρ), x?(ρ) is not necessarily an increasing function of
ρ. Nevertheless, there exists x?max(ρ) = 1 as ρ is decreased
from ρ = 1, in accordance with Theorem 5. From Fig. 2, we
see that the largest 0 ≤ ρ < 1 such that x?max(ρ) = 1 is
given by ρ = ρ? = 0.2694. Thus, this gives the solution for
Problem P2. The corresponding demand and load allocation
are shown as Fig. 5 later in Section V.

V. NUMERICAL RESULTS

In this section, unless otherwise specified, we obtain numer-
ical results assuming the utility function is the LOG utility.
The optimization problem P1, and more generally Q(ρ), is
convex. This is because the objective function is linear and
the constraint set is convex due to Theorem 3 for the case of
LOG utility. Thus, the optimal demand vectors d̃?, d̃

′? can be
solved efficiently by standard numerical solvers. Specifically,
we use the active-set algorithm with the fmincon function
in the MATLAB software. The optimal load vectors x? and
x′
? are then computed using a synchronous or asynchronous

iterative algorithm according to Lemma 1 and Remark 1,
respectively.

Our theoretical result and numerical approach apply re-
gardless of where the base stations, access points and users
are deployed. For ease of viewing the numerical results, we
position the base stations and access points at equal distance
apart, while the users are at arbitrarily but fixed locations
(obtained by the realizations from a uniform distribution). For
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the network configuration, we assume all cells are square in
shape. The regular cellular network consists of n = 9 cells,
where each square cell is of two unit length. The cells are
arranged uniformly as shown in Fig. 3. A base station is placed
in the centre of each regular cell, shown as a blue square in
Fig. 3. In each regular cell, there are four disjoint square WiFi
cells each of unit length, making a total of n′ = 36 WiFi cells.
Within each WiFi cell, there are 5 users. A WiFi access point is
placed in the center of each WiFi cell, shown as a red triangle.
Every user is served by the WiFi cell and the base station cell
that it resides in. Thus, every access point can support up to 5
users while every base station can support up to 20 users. We
make the same-demand assumption that all users in the same
(regular or WiFi) cell are allocated the same demand.

We use the same weight kij = 1 for all base stations, and
the weight k′ab = 1/4 for all access points; the difference
in weights is used to account for the fact that the number of
access points is four times the number of base stations. We set
the (normalized) transmission power of every regular cell as
100, the transmission power of every WiFi cell as 1, and the
noise variance as 0.01. The channel gain from the ith regular
cell to the jth user is fixed as gij = z−κij where zij is the
distance between transmitter i and receiver j, and κ = 4 is
the path loss exponent. The channel gains for the WiFi cells
are obtained similarly.

A. Low Maximum Demand

In our first numerical experiment, we fix the maximum
demand to be Di = 0.1, i ∈ N . Solving for Problem P1 nu-
merically, we obtain the optimal demand and load allocations
as indicated in Fig. 4 besides the positions of the base stations
and access points. From Fig. 4(a), all cells are operating below
full load, i.e., x?max ≤ 1. We observe that the load allocation
in Fig. 4(a) is non-uniform, due to the non-uniform user
distribution as shown in Fig. 3. From Fig. 4(b), the optimal
demand to be served by every regular cell and WiFi cell is the
same, given by d? = 0.05 nat. Thus, all users are served the
maximum rate of Di = 0.1 nat in total, with d? contributed by
the regular cell and another d? contributed equally by the WiFi
cell. The reason for such a uniform distribution of the optimal
demand follows. We observe that the optimal demand is also
given by d? = 0.05 if we maximize the sum utility without the
spectral-radius constraints (17b) and (17c) (not shown here).
This implies that the spectral-radius constraints are in fact
not active in the original problem, i.e., the demands can be
treated as unconstrained variables without loss of optimality.
For our choice of kij = 1, k′ab = 1/4 and with one base
station for every four access points, the optimal demand is
thus uniform for all the access points and the base stations.
In further numerical experiments where the weights kij , k′ab
are changed (not shown here), we observe that the optimal
demand is not necessarily uniform, i.e., the values are different
for the base stations and the access points. Nevertheless,
we make the consistent observation that the same optimal
demand is obtained whether with or without the spectral-radius
constraints; this is consistent with the earlier observation that
the maximum load has not exceeded one.
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(a) Optimal load allocation.
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(b) Optimal demand allocation.

Fig. 4. Optimal allocation with LOG utility and maximum demand fixed
as 0.1. The spectral radius is subject to a maximum constraint of 1; the
maximum load value turns out to be less than one.

B. High Maximum Demand

Next, we increase the maximum demand to Di = 0.45, i ∈
N . With this high maximum demand, we shall see that the
spectral-radius constraint becomes active, and the maximum
demand requested by the users cannot be achieved.

Solving for Problem P1 numerically, we obtain the maxi-
mum optimal load as x?max(ρ) > 1 with ρ = 1. Thus, some of
the cells are overloaded and the optimal demand vector d?(ρ)
with ρ = 1 cannot be practically implemented. To reduce
the load, we solve Problem P2 via the algorithm proposed
in Section IV-E. In this algorithm, we obtain ρ? given by
the largest ρ in Problem Q(ρ) such that the corresponding
maximum optimal load x?max(ρ) = 1 − ε where ε > 0 is
close to zero. The sum utility U sum and the maximum optimal
load x?max are plotted as functions of ρ in Fig. 2. For ease of
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(a) Optimal load allocation.
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(b) Optimal demand allocation.

Fig. 5. Optimal allocation with LOG utility and maximum demand fixed as
0.45. The spectral radius is subject to a maximum constraint of 0.2694 so
that the maximum load value is less than one.

viewing, U sum has been increased by a constant value. From
Fig. 2, the optimal ρ is ρ? = 0.2694. The average per-user
demand achieved, obtained by averaging the sum demand over
all users, is then given by 0.4449 nat, which is less than the
maximum demand of Di = 0.45.

After constraining the load such that x?max(ρ
?) ≤ 1 via

Problem P2, we obtain the optimal demand vector d(ρ?),
and the corresponding load x?(ρ?), as shown in Fig. 5. From
Fig. 5(a), all the loads have been constrained to less than
one. Similar to the low maximum demand case, the load
allocation is not uniform due to the non-uniform user allo-
cation. However, in contrast to the uniform demand allocation
for the low maximum demand case shown in Fig. 4(b), the
demand allocation in Fig. 5(b) is not uniform. For example,
in Fig. 5(b), the base station at coordinates (5, 3) serves

0.089 nat to all its users, while the WiFi access points within
the base station cell serve a variation of demand, ranging from
0.273 nat for the access point at (4.5, 2.5), to 0.361 nat for
the access points at (4.5, 3.5), (5.5, 2.5) and (5.5, 3.5). That is,
the users are served in total a demand ranging from 0.362 nat
to the maximum request demand of 0.45 nat. The reason in
the difference of the demand served is likely because the users
that are served a smaller demand are closer to the center of
the entire network and hence received more interference. We
note that this observation may not always hold in general since
it depends on the user distribution and the resulting optimal
load allocation in the entire network. For example, all the users
served by the base station cell at (3, 3) receive the maximum
demand, with 0.072 nat from the base station and 0.378 nat
from their respective access points. In general, however, we
may still conclude that for the high maximum demand case,
the spectral-radius constraints become tight which can limit
the demand served to the users, especially those cells that
receive the most amount of interference.

C. Different Utility Functions

We assume the high-maximum-demand case of Di =
0.45, i ∈ N . The results for the LOG utility has been given
earlier in Fig. 5. The results for DLOG utility are almost
identical to the case of the LOG utility, and are thus omitted.
The similarity of the result is likely because the user fairness
has already been largely taken into account via the LOG utility,
and emphasizing this same aspect via the DLOG utility does
not lead to a significantly different optimal solution.

Finally, we consider the use of the LIN utility. From The-
orem 3, the feasible set F̃ may not be convex and hence our
numerical solution is not necessarily optimal. Nevertheless,
we shall see that we can still obtain a higher average per-user
demand, but at the expense of user fairness.

The optimal demand vector d(ρ?), and the corresponding
load x?(ρ?), are shown in Fig. 6. Again, we have constrained
the load to be less than one, similarly by solving Problem P2
as before. The average per-user demand achieved is observed
to be the maximally possible given by 0.45 nat, compared
to 0.4449 nat achieved with LOG utility. This is within
expectation since the LIN utility only focus on maximizing the
sum demand. However, not all base stations or access points
are uniformly served similar demand. In extreme cases, it is
possible that some users are not served at all while other users
are served the maximum load.

VI. CONCLUSION

We have presented a utility-based optimization framework
for data offloading in cellular networks, taking into account
the inherent coupling relation among the cells. Within this
framework, fundamental properties on the computation, feasi-
bility, and monotonicity of the load-coupled system have been
studied. Three utility functions that differ in the emphasis on
fairness have been considered, and fundamental insights of
convexity analysis of the resulting optimization problem have
been developed. Our analysis shows that optimal offloading is
tractable when fairness is stressed. We also propose a strategy
to constrain the load to some maximum value, as required for



10

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0.506 0.002 0.984

0.000 0.009 0.999

0.053 0.039 0.038

0.142 0.563

0.217 0.456

0.830 0.616

0.435 0.452

0.197 0.122

0.262 0.296

0.326 0.723

0.705 0.450

0.654 0.704

0.954 0.373

0.774 0.346

0.547 0.443

0.384 0.722

0.468 0.718

0.578 0.614

0.304 0.652

0.663 0.461

0.268 0.271

(a) Optimal load allocation.
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Fig. 6. Optimal allocation with LIN utility and maximum demand fixed as
0.45. The spectral radius is subject to a maximum constraint of 0.301 so that
the maximum load value is still less than one.

practical implementation, and provide theoretical justification
for the proposed algorithm. In conclusion, our work provides
a structured view on the offloading problem, and our analysis
serves as a theoretical reference for empirical simulations
and further performance evaluation. As future work, we shall
consider the related problems of energy minimization and
user-network association.

APPENDIX A
PROOF OF THEOREM 2

Consider the following asynchronous iteration in Remark 1
that runs for k = 1, · · · ,K. For each outer iteration k, we
execute an inner iteration that runs for m = 1, · · · , n:

xkm = fm(xk−1,m) (24)

where x0,1 = [x01, · · · , x0n] is an arbitrary initial load and
xk−1,m , [xk1 , · · · , xkm−1, xk−1m , · · · , xk−1n ] denotes the most
current updated load vector. After all iterations, the final load
vector is given by xK,n+1, denoted simply as xK . From
Remark 1, (24) is an asynchronous iteration which ensures
that xK converges to the final fixed-point solution in (5).

Suppose only one element of d′ is strictly greater than d,
say dij . For the initial load, we choose x1,0 = x?. We then
obtain the following results by performing the iteration (24).
• For k = 1: x1i > x0i while x1` = x0` for ` 6= i.
• For k = 2: x2i = x1i while x2` > x1` for ` 6= i.
• For k ≥ 3: xki > xk−1i while xk` > xk−1` for ` 6= i.

Specifically, for k = 1, we have used (4) where we replace
dij by d′ij ; for k ≥ 2, we have used (24) and the result for the
prior k. Thus, xk,n > xk−1,n for k ≥ 3, while x2,n ≥ x1,n ≥
x1,0 = x?. Together with the convergence guarantee, we get
limK→∞ xKn = x′

?
> x? as desired. It is easy to check that

the above conclusion holds even if more than one element in
d′ is strictly greater than d if all the users are served by the
same (and only) base station i.

Next, consider the general case where d′ ≥ d,d′ 6= d,
Let s ≥ 1 be the number of base stations serving users with
different demand in d′ and d. Then we can always find a
set {d̃1, · · · , d̃s} with distinct elements ordered according to
d′ ≥ d̃s ≥ · · · ≥ d̃1 ≥ d such that for any neighbouring
pairs of vectors, e.g. {d′, d̃s}, only one base station serve
the users with different demand. We then use the following
inductive steps to complete the proof. First, we obtain the
load x̃1 that corresponds to d̃1 in (5). To do so, we use x?

as the initial load and the asynchronous iteration as before,
which shows that x̃1 > x?. Second, we use x̃1 as the initial
load and the asynchronous iteration as before, to show that the
corresponding load x̃2 satisfies x̃2 > x̃1. Proceeding similarly,
we thus get x′? > x̃s > · · · > x̃1 > x?.

APPENDIX B
LEMMA ON IRREDUCIBLE MATRIX

Consider a non-negative matrix B ∈ Rn×n+ with the (i, j)th
element given by bij . Let the incidence matrix of B be A ∈
{0, 1}n×n with the (i, j)th element aij = 1 if bij > 0 and
aij = 0 if bij = 0. Denote the element of Am as a(m)

ij . We
say B is irreducible if a(m)

ij > 0 for all i, j for some m ≥ 1.
Lemma 3: The matrix Λ̃ ∈ Rn×n+ , n ≥ 3, with (i, k)th ele-

ment given by (20) is irreducible. Also, (Λ̃Λ̃T ) is irreducible.
Proof: From (20), the diagonal elements of Λ̃ are zeros,

while the off-diagonal elements are strictly positive since the
channel gains {gkj} are positive. Thus, the incidence matrix
of Λ̃ is A = 1n · 1Tn − In, where In is the n-by-n identity
matrix. Thus A2 = (n− 2)1n ·1Tn + In. Clearly A2 > 0, and
so Λ(d) is irreducible. Moreover, (Λ̃Λ̃T ) is irreducible as the
incidence matrix is A2 > 0.

APPENDIX C
LEMMA ON LOG-CONVEXITY TO PROVE THEOREM 3

Lemma 4: Assume f(x) is an increasing function with
inverse g(y) = f−1(y). Assume f(x) and g(y) are differ-
entiable. Then g(y) is strictly log-convex if and only if

xf ′′(x) + f ′(x) < 0. (25)
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where f ′(·) and f ′′(·) are the first and second derivatives of
f(·).

Proof: The second derivative of log(g(y)) is given by
g′′(y)/g(y)− (g′(y)/g(y))2, so g(y) is strictly log-convex iff

g′′(y)g(y)− (g′(y))2 > 0. (26)

To complete the proof, we shall show that (26) holds.
We can write g(f(x)) = x. Differentiating with re-

spect to x, we get g′(f(x)) = 1/f ′(x). Differenti-
ating again with respect to x, we get g′′(f(x)) =
−f ′′(x)/(f ′(x))3. Thus the left-hand side of (26) can be writ-
ten as g′′(f(x))g(f(x))−(g′(f(x)))2 = −xf ′′(x)/(f ′(x))3−
1/(f ′(x))2 = −(xf ′′(x) + f ′(x))/(f ′(x))3. Since f ′(x) ≥ 0,
(26) holds if and only if (25) holds, which completes the proof.

APPENDIX D
LEMMA TO PROVE THEOREM 4

Lemma 5: Let A,B ≥ 0 be n-by-n matrices, and A is
irreducible. Then r(A+B) ≥ r(A) with equality if and only
if B = 0.

Proof: Let u be the (right) eigenvector that corresponds
to the largest eigenvalue of A. Applying the Perron-Frobenius
Theorem to A [10], we have u > 0 and r(A) equals the
largest eigenvalue. Then the spectral radius of A+B can be
written as

r(A+B) = max
‖z‖=1

|zH(A+B)z| (27)

≥ uHAu+ uHBu (28)
≥ uHAu = r(A) (29)

Here, the first inequality is due to replacing z by u. The
second inequality is due to B ≥ 0 and u > 0, and becomes
an equality if and only if B = 0. This concludes the proof.
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