5 research outputs found

    Tree canopy extent and height change in Europe, 2001-2021, quantified using Landsat data archive

    Get PDF
    European forests are among the most extensively studied ecosystems in the world, yet there are still debates about their recent dynamics. We modeled the changes in tree canopy height across Europe from 2001 to 2021 using the multidecadal spectral data from the Landsat archive and calibration data from Airborne Laser Scanning (ALS) and spaceborne Global Ecosystem Dynamics Investigation (GEDI) lidars. Annual tree canopy height was modeled using regression tree ensembles and integrated with annual tree canopy removal maps to produce harmonized tree height map time series. From these time series, we derived annual tree canopy extent maps using a >= 5 m tree height threshold. The root-mean-square error (RMSE) for both ALS-calibrated and GEDI-calibrated tree canopy height maps was = 94% for the tree canopy extent maps and >= 80% for the annual tree canopy removal maps. Analyzing the map time series, we found that the European tree canopy extent area increased by nearly 1% overall during the past two decades, with the largest increase observed in Eastern Europe, Southern Europe, and the British Isles. However, after the year 2016, the tree canopy extent in Europe declined. Some regions reduced their tree canopy extent between 2001 and 2021, with the highest reduction observed in Fennoscandia (3.5% net decrease). The continental extent of tall tree canopy forests (>= 15 m height) decreased by 3% from 2001 to 2021. The recent decline in tree canopy extent agrees with the FAO statistics on timber harvesting intensification and with the increasing extent and severity of natural disturbances. The observed decreasing tree canopy height indicates a reduction in forest carbon storage capacity in Europe

    Upper limits for stereoselective photodissociation of free amino acids in the vacuum ultraviolet region and at the C 1s edge

    No full text
    We measured the total and partial ion yields of the two chiral amino acids alanine and serine in the gas phase both in the vacuum ultraviolet region and at the C(1s) edge using circularly polarized light. We did not detect any circular dichroism asymmetry larger than 1×10–3. A similar measurement of fixed-in-space amino acids yielded an upper limit of 1×10–2 for the stereoselective effect of circularly polarized light. The results obtained are relevant for quantitative models of stereoselective photodecomposition of amino acids that try to explain the homochirality of life

    Tree canopy extent and height change in Europe, 2001–2021, quantified using Landsat data archive

    No full text
    European forests are among the most extensively studied ecosystems in the world, yet there are still debates about their recent dynamics. We modeled the changes in tree canopy height across Europe from 2001 to 2021 using the multidecadal spectral data from the Landsat archive and calibration data from Airborne Laser Scanning (ALS) and spaceborne Global Ecosystem Dynamics Investigation (GEDI) lidars. Annual tree canopy height was modeled using regression tree ensembles and integrated with annual tree canopy removal maps to produce harmonized tree height map time series. From these time series, we derived annual tree canopy extent maps using a ≥ 5 m tree height threshold. The root-mean-square error (RMSE) for both ALS-calibrated and GEDI-calibrated tree canopy height maps was ≤4 m. The user's and producer's accuracies estimated using reference sample data are ≥94% for the tree canopy extent maps and ≥ 80% for the annual tree canopy removal maps. Analyzing the map time series, we found that the European tree canopy extent area increased by nearly 1% overall during the past two decades, with the largest increase observed in Eastern Europe, Southern Europe, and the British Isles. However, after the year 2016, the tree canopy extent in Europe declined. Some regions reduced their tree canopy extent between 2001 and 2021, with the highest reduction observed in Fennoscandia (3.5% net decrease). The continental extent of tall tree canopy forests (≥ 15 m height) decreased by 3% from 2001 to 2021. The recent decline in tree canopy extent agrees with the FAO statistics on timber harvesting intensification and with the increasing extent and severity of natural disturbances. The observed decreasing tree canopy height indicates a reduction in forest carbon storage capacity in Europe.</p
    corecore