29 research outputs found

    Exohedral Physisorption of Ambient Moisture Scales Non-monotonically with Fiber Proximity in Aligned Carbon Nanotube Arrays

    Get PDF
    Here we present a study on the presence of physisorbed water on the surface of aligned carbon nanotubes (CNTs) in ambient conditions, where the wet CNT array mass can be more than 200% larger than that of dry CNTs, and modeling indicates that a water layer >5 nm thick can be present on the outer CNT surface. The experimentally observed nonlinear and non-monotonic dependence of the mass of adsorbed water on the CNT packing (volume fraction) originates from two competing modes. Physisorbed water cannot be neglected in the design and fabrication of materials and devices using nanowires/nanofibers, especially CNTs, and further experimental and ab initio studies on the influence of defects on the surface energies of CNTs, and nanowires/nanofibers in general, are necessary to understand the underlying physics and chemistry that govern this system.National Science Foundation (U.S.) (NSF Grant No. CMMI-1130437)National Science Foundation (U.S.) (NSF Award Number ECS-0335765)United States. Army Research Office (contract W911NF-07-D-0004

    Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks

    Get PDF
    Here, we quantify the electron transport properties of aligned carbon nanotube (CNT) networks as a function of the CNT length, where the electrical conductivities may be tuned by up to 10× with anisotropies exceeding 40%. Testing at elevated temperatures demonstrates that the aligned CNT networks have a negative temperature coefficient of resistance, and application of the fluctuation induced tunneling model leads to an activation energy of ≈14 meV for electron tunneling at the CNT-CNT junctions. Since the tunneling activation energy is shown to be independent of both CNT length and orientation, the variation in electron transport is attributed to the number of CNT-CNT junctions an electron must tunnel through during its percolated path, which is proportional to the morphology of the aligned CNT network.United States. Army Research Office (contract W911NF-07-D-0004)United States. Army Research Office (contract W911NF-13-D-0001)United States. Air Force Office of Scientific Research (AFRL/RX contract FA8650-11-D-5800, Task Order 0003)National Science Foundation (U.S.) (NSF Award No. ECS-0335765)United States. Dept. of Defense (National Defense Science and Engineering Graduate Fellowship

    Breaking Proportional Recovery After Stroke

    No full text

    Boulding, Kenneth E., and Laurence Senesh, eds., The Optimum Utilization of Knowledge: Making Knowledge Serve Human Betterment . Boulder, CO: Westview, 1983.

    No full text
    Contains articles relating the topic to education and to decision-making in social institutions

    Saturation of the yield limit of copper irradiated with charged particles

    No full text
    22.00; Translated from Russian (Fiz. Khim. Obrab. Mater. 1989 v. 23(2) p. 5-10)Available from British Library Document Supply Centre- DSC:9023.19(VR-Trans--4492)T / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Breaking Proportional Recovery After Stroke

    No full text
    People with hemiparesis after stroke appear to recover 70% to 80% of the difference between their baseline and the maximum upper extremity Fugl-Meyer (UEFM) score, a phenomenon called proportional recovery (PR). Two recent commentaries explained that PR should be expected because of mathematical coupling between the baseline and change score. Here we ask, If mathematical coupling encourages PR, why do a fraction of stroke patients (the "nonfitters") not exhibit PR? At the neuroanatomical level of analysis, this question was answered by Byblow et al-nonfitters lack corticospinal tract (CST) integrity at baseline-but here we address the mathematical and behavioral causes. We first derive a new interpretation of the slope of PR: It is the average probability of scoring across remaining scale items at follow-up. PR therefore breaks when enough test items are discretely more difficult for a patient at follow-up, flattening the slope of recovery. For the UEFM, we show that nonfitters are most unlikely to recover the ability to score on the test items related to wrist/hand dexterity, shoulder flexion without bending the elbow, and finger-to-nose movement, supporting the finding that nonfitters lack CST integrity. However, we also show that a subset of nonfitters respond better to robotic movement training in the chronic phase of stroke. These persons are just able to move the arm out of the flexion synergy and pick up small blocks, both markers of CST integrity. Nonfitters therefore raise interesting questions about CST function and the basis for response to intensive movement training
    corecore