1,363 research outputs found

    Preparation of Ion Imprinted SPR Sensor for Real-Time Detection of Silver(I) Ion from Aqueous Solution

    Get PDF
    The aim of the submitted study is to develop molecular imprinting based surface plasmon resonance (SPR) sensor for real-time silver ion detection. For this purpose polymeric nanofilm layer on the gold SPR chip surface was prepared via UV polymerization of acrylic acid at 395 nm for 30 minutes. N-methacryloyl- L cysteine used as the functional monomer to recognize the silver(I) ions from the aqueous solutions and methylene bisacrylamide used as the crosslinker for obtaining structural rigidity of the formed cavities. Silver(I) solutions with different concentrations were applied to SPR system to investigate the efficiency of the imprinted SPR sensor in real time. For the control experiments, non-imprinted SPR sensor was also prepared as described above without addition of template “silver(I) ions”. Prepared SPR sensors were characterized with atomic force microscopy (AFM). In order to show the selectivity of the silver(I) imprinted SPR sensor, competitive adsorption of Cu(II), Pb(II), Ni(II) ions was investigated. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3489

    Distribution of entanglement in light-harvesting complexes and their quantum efficiency

    Full text link
    Recent evidence of electronic coherence during energy transfer in photosynthetic antenna complexes has reinvigorated the discussion of whether coherence and/or entanglement has any practical functionality for these molecular systems. Here we investigate quantitative relationships between the quantum yield of a light-harvesting complex and the distribution of entanglement among its components. Our study focusses on the entanglement yield or average entanglement surviving a time scale comparable to the average excitation trapping time. As a prototype system we consider the Fenna-Matthews-Olson (FMO) protein of green sulphur bacteria and show that there is an inverse relationship between the quantum efficiency and the average entanglement between distant donor sites. Our results suggest that longlasting electronic coherence among distant donors might help modulation of the lightharvesting function.Comment: Version accepted for publication in NJ

    Noise Dressing of Financial Correlation Matrices

    Full text link
    We show that results from the theory of random matrices are potentially of great interest to understand the statistical structure of the empirical correlation matrices appearing in the study of price fluctuations. The central result of the present study is the remarkable agreement between the theoretical prediction (based on the assumption that the correlation matrix is random) and empirical data concerning the density of eigenvalues associated to the time series of the different stocks of the S&P500 (or other major markets). In particular the present study raises serious doubts on the blind use of empirical correlation matrices for risk management.Comment: Latex (Revtex) 3 pp + 2 postscript figures (in-text

    Small eigenvalues of the staggered Dirac operator in the adjoint representation and Random Matrix Theory

    Get PDF
    The low-lying spectrum of the Dirac operator is predicted to be universal, within three classes, depending on symmetry properties specified according to random matrix theory. The three universal classes are the orthogonal, unitary and symplectic ensemble. Lattice gauge theory with staggered fermions has verified two of the cases so far, unitary and symplectic, with staggered fermions in the fundamental representation of SU(3) and SU(2). We verify the missing case here, namely orthogonal, with staggered fermions in the adjoint representation of SU(N_c), N_c=2, 3.Comment: 3 pages, revtex, 2 postscript figure

    A Random Matrix Model for Color Superconductivity at Zero Chemical Potential

    Get PDF
    We discuss random matrix models for the spontaneous breaking of both chiral and color symmetries at zero chemical potential and finite temperature. Exploring different Lorentz and gauge symmetric color structures of the random matrix interactions, we find that spontaneous chiral symmetry breaking is always thermodynamically preferred over diquark condensation. Stable diquark condensates appear only as SU(2) rotated chiral condensates, which do not represent an independent thermodynamic phase. Our analysis is based on general symmetry arguments and hence suggests that no stable and independent diquark phase can form in QCD with two flavors at zero quark chemical potential.Comment: 26 pages, 1 figure, uses ReVTeX and epsf.st

    Role of quantum coherence in chromophoric energy transport

    Get PDF
    The role of quantum coherence and the environment in the dynamics of excitation energy transfer is not fully understood. In this work, we introduce the concept of dynamical contributions of various physical processes to the energy transfer efficiency. We develop two complementary approaches, based on a Green's function method and energy transfer susceptibilities, and quantify the importance of the Hamiltonian evolution, phonon-induced decoherence, and spatial relaxation pathways. We investigate the Fenna-Matthews-Olson protein complex, where we find a contribution of coherent dynamics of about 10% and of relaxation of 80%.Comment: 5 pages, 3 figures, included static disorder, correlated environmen

    Staggered Fermions and Gauge Field Topology

    Get PDF
    Based on a large number of smearing steps, we classify SU(3) gauge field configurations in different topological sectors. For each sector we compare the exact analytical predictions for the microscopic Dirac operator spectrum of quenched staggered fermions. In all sectors we find perfect agreement with the predictions for the sector of topological charge zero, showing explicitly that the smallest Dirac operator eigenvalues of staggered fermions at presently realistic lattice couplings are insensitive to gauge field topology. On the smeared configurations, 4ν4\nu eigenvalues clearly separate out from the rest on configurations of topological charge ν\nu, and move towards zero in agreement with the index theorem.Comment: LaTeX, 10 page

    Pseudo-unitary symmetry and the Gaussian pseudo-unitary ensemble of random matrices

    Full text link
    Employing the currently discussed notion of pseudo-Hermiticity, we define a pseudo-unitary group. Further, we develop a random matrix theory which is invariant under such a group and call this ensemble of pseudo-Hermitian random matrices as the pseudo-unitary ensemble. We obtain exact results for the nearest-neighbour level spacing distribution for (2 X 2) PT-symmetric Hamiltonian matrices which has a novel form, s log (1/s) near zero spacing. This shows a level repulsion in marked distinction with an algebraic form in the Wigner surmise. We believe that this paves way for a description of varied phenomena in two-dimensional statistical mechanics, quantum chromodynamics, and so on.Comment: 9 pages, 2 figures, LaTeX, submitted to the Physical Review Letters on August 20, 200

    Determinantal process starting from an orthogonal symmetry is a Pfaffian process

    Full text link
    When the number of particles NN is finite, the noncolliding Brownian motion (BM) and the noncolliding squared Bessel process with index ν>1\nu > -1 (BESQ(ν)^{(\nu)}) are determinantal processes for arbitrary fixed initial configurations. In the present paper we prove that, if initial configurations are distributed with orthogonal symmetry, they are Pfaffian processes in the sense that any multitime correlation functions are expressed by Pfaffians. The 2×22 \times 2 skew-symmetric matrix-valued correlation kernels of the Pfaffians processes are explicitly obtained by the equivalence between the noncolliding BM and an appropriate dilatation of a time reversal of the temporally inhomogeneous version of noncolliding BM with finite duration in which all particles start from the origin, Nδ0N \delta_0, and by the equivalence between the noncolliding BESQ(ν)^{(\nu)} and that of the noncolliding squared generalized meander starting from Nδ0N \delta_0.Comment: v2: AMS-LaTeX, 17 pages, no figure, corrections made for publication in J.Stat.Phy

    Universal Scaling of the Chiral Condensate in Finite-Volume Gauge Theories

    Get PDF
    We confront exact analytical predictions for the finite-volume scaling of the chiral condensate with data from quenched lattice gauge theory simulations. Using staggered fermions in both the fundamental and adjoint representations, and gauge groups SU(2) and SU(3), we are able to test simultaneously all of the three chiral universality classes. With overlap fermions we also test the predictions for gauge field sectors of non-zero topological charge. Excellent agreement is found in most cases, and the deviations are understood in the others.Comment: Expanded discussion of overlap fermion results. 17 pages revtex, 7 postscript figure
    corecore