32 research outputs found
A Genome-Wide Analysis of FRT-Like Sequences in the Human Genome
Efficient and precise genome manipulations can be achieved by the
Flp/FRT system of site-specific DNA recombination.
Applications of this system are limited, however, to cases when target sites for
Flp recombinase, FRT sites, are pre-introduced into a genome
locale of interest. To expand use of the Flp/FRT system in
genome engineering, variants of Flp recombinase can be evolved to recognize
pre-existing genomic sequences that resemble FRT and thus can
serve as recombination sites. To understand the distribution and sequence
properties of genomic FRT-like sites, we performed a
genome-wide analysis of FRT-like sites in the human genome
using the experimentally-derived parameters. Out of 642,151 identified
FRT-like sequences, 581,157 sequences were unique and
12,452 sequences had at least one exact duplicate. Duplicated
FRT-like sequences are located mostly within LINE1, but
also within LTRs of endogenous retroviruses, Alu repeats and other repetitive
DNA sequences. The unique FRT-like sequences were classified
based on the number of matches to FRT within the first four
proximal bases pairs of the Flp binding elements of FRT and the
nature of mismatched base pairs in the same region. The data obtained will be
useful for the emerging field of genome engineering
Cisgenesis and intragenesis as new strategies for crop improvement
Cisgenesis and intragenesis are emerging plant breeding technologies which offer great promise for future acceptance of genetically engineered crops. The techniques employ traditional genetic engineering methods but are confined to transferring of genes and genetic elements between sexually compatible species that can breed naturally. One of the main requirements is the absence of selectable marker genes (such as antibiotic resistance genes) in the genome. Hence the sensitive issues with regard to transfer of foreign genes and antibiotic resistance are overcome. It is a targeted technique involving specific locus; therefore, linkage drag that prolongs the time for crop improvement in traditional breeding does not occur. It has great potential for crop improvement using superior alleles that exist in the untapped germplasm or wild species. Cisgenic and intragenic plants may not face the same stringent regulatory assessment for field release as transgenic plants which is a clear added advantage that would save time. In this chapter, the concepts of cis/intragenesis and the prerequisites for the development of cis/intragenesis plants are elaborated. Strategies for marker gene removal after selection of transformants are discussed based on the few recent reports from various plant species
Recombinase technology: applications and possibilities
The use of recombinases for genomic engineering is no longer a new technology. In fact, this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems (Sauer in Mol Cell Biol 7(6):2087–2096, 1987). The random insertion of a transgene into a plant genome by traditional methods generates unpredictable expression patterns. This feature of transgenesis makes screening for functional lines with predictable expression labor intensive and time consuming. Furthermore, an antibiotic resistance gene is often left in the final product and the potential escape of such resistance markers into the environment and their potential consumption raises consumer concern. The use of site-specific recombination technology in plant genome manipulation has been demonstrated to effectively resolve complex transgene insertions to single copy, remove unwanted DNA, and precisely insert DNA into known genomic target sites. Recombinases have also been demonstrated capable of site-specific recombination within non-nuclear targets, such as the plastid genome of tobacco. Here, we review multiple uses of site-specific recombination and their application toward plant genomic engineering. We also provide alternative strategies for the combined use of multiple site-specific recombinase systems for genome engineering to precisely insert transgenes into a pre-determined locus, and removal of unwanted selectable marker genes