9 research outputs found

    Polluted Air Exposure Compromises Corneal Immunity and Exacerbates Inflammation in Acute Herpes Simplex Keratitis

    Get PDF
    Air pollution is a serious environmental issue worldwide in developing countries?megacities, affecting the population?s health, including the ocular surface, bypredisposing or exacerbating other ocular diseases. Herpes simplex keratitis (HSK) iscaused by the herpes simplex virus type 1 (HSV-1). The primary or recurring infection inthe ocular site causes progressive corneal scarring that may result in visual impairment.The present study was designed to study the immunopathological changes of acute HSKunder urban polluted air, using the acute HSK model combined with an experimentalurban polluted air exposure from Buenos Aires City. We evaluated the corneal clinicaloutcomes, viral DNA and pro-inflammatory cytokines by RT-PCR and ELISA assays,respectively. Then, we determined the innate and adaptive immune responses in bothcornea and local lymph nodes after HSV-1 corneal by immunofluorescence staining andflow cytometry. Our results showed that mice exposed to polluted air develop a severeform of HSK with increased corneal opacity, neovascularization, HSV-1 DNA andproduction of TNF-a, IL-1b, IFN-g, and CCL2. A high number of corneal residentimmune cells, including activated dendritic cells, was observed in mice exposed topolluted air; with a further significant influx of bone marrow-derived cells including GR1+ cells (neutrophils and inflammatory monocytes), CD11c+ cells (dendritic cells), and CD3+ (T cells) during acute corneal HSK. Moreover, mice exposed to polluted air showed apredominant Th1 type T cell response over Tregs in local lymph nodes during acute HSKwith decreased corneal Tregs. These findings provide strong evidence that urban pollutedair might trigger a local imbalance of innate and adaptive immune responses thatexacerbate HSK severity. Taking this study into account, urban air pollution should beconsidered a key factor in developing ocular inflammatory diseases.Fil: Sendra, Victor German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Tau, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Zapata, Gustavo Leonardo. Universidad de Buenos Aires; ArgentinaFil: Lasagni Vitar, Romina Mayra. Universidad de Buenos Aires; ArgentinaFil: Illian, Eduardo. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; ArgentinaFil: Chiaradía, Pablo. Universidad de Buenos Aires; ArgentinaFil: Berra, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentin

    Kinetics of corneal leukocytes by intravital multiphoton microscopy

    Get PDF
    Corneal immune privilege is integral in maintaining the clear avascular window to the foreign world. The presence of distinct populations of corneal leukocytes (CLs) in the normal cornea has been firmly established. However, their precise function and kinetics remain, as of yet, unclear. Through intravital multiphoton microscopy (IV-MPM), allowing themeans to accumulate critical spatial and temporal cellular information, we provide details for long-term investigation of CL morphology and kinetics under steady state and following inflammation. Significant alterations in size and morphology of corneal CD11c+ dendritic cells (DCs) were noted following acute sterile inflammation, including cellvolume(4364.4±489.6 vs. 1787.6±111.0mm3,P<0.001)andsphericity (0.82±0.01 vs. 0.42± 0.02,P<0.001) comparedwith steady state. Furthermore, IV-MPManalyses revealed alterations in both theCD11c+DC and major histocompatibility complex class II (MHC)-II+ mature antigen-presenting cell population kinetics during inflammation, including track displacement length (CD11c: 16.57±1.41 vs. 4.64±0.56 μm, P < 0.001;MHC-II: 9.03± 0.37 vs. 4.09±0.39,P<0.001) andvelocity (CD11c: 1.91±0.07μm/minvs. 1.73±0.1302μm/min; MHC-II: 2.97±0.07 vs. 1.62 ± 0.08, P < 0.001) compared with steady state. Our results reveal in vivo evidence of sessile CL populations exhibiting dendritic morphology under steady state and increased velocity of spherical leukocytes following inflammation. IV-MPMrepresents a powerful tool to study leukocytes in corneal diseases in context.Fil: Seyed-Razavi, Yashar. Tufts University; Estados UnidosFil: Lopez, Maria J.. Tufts University; Estados UnidosFil: Mantopoulos, Dimosthenis. Harvard Medical School; Estados UnidosFil: Zheng, Lixin. Harvard Medical School; Estados UnidosFil: Massberg, Steffen. Ludwig Maximilians Universitat; Alemania. Harvard Medical School; Estados UnidosFil: Sendra, Victor German. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Patología; Argentina. Tufts University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Harris, Deshea L.. Tufts University; Estados UnidosFil: Hamrah, Pedram. Harvard Medical School; Estados Unido

    Polypeptide N-acetylgalactosamine transferase 3: a post-translational writer on human health

    Get PDF
    Polypeptide N-acetylgalactosamine transferase 3 (ppGalNAc-T3) is an enzyme involved in the initiation of O-GalNAc glycan biosynthesis. Acting as a writer of frequent post-translational modification (PTM) on human proteins, ppGalNAc-T3 has key functions in the homeostasis of human cells and tissues. We review the relevant roles of this molecule in the biosynthesis of O-GalNAc glycans, as well as in biological functions related to human physiological and pathological conditions. With main emphasis in ppGalNAc-T3, we draw attention to the different ways involved in the modulation of ppGalNAc-Ts enzymatic activity. In addition, we take notice on recent reports of ppGalNAc-T3 having different subcellular localizations, highlight critical intrinsic and extrinsic functions in cellular physiology that are exerted by ppGalNAc-T3-synthesized PTMs, and provide an update on several human pathologies associated with dysfunctional ppGalNAc-T3. Finally, we propose biotechnological tools as new therapeutic options for the treatment of pathologies related to altered ppGalNAc-T3. KEY MESSAGES: ppGalNAc-T3 is a key enzyme in the human O-GalNAc glycans biosynthesis. enzyme activity is regulated by PTMs, lectin domain and protein-protein interactions. ppGalNAc-T3 is located in human Golgi apparatus and cell nucleus. ppGalNAc-T3 has a central role in cell physiology as well as in several pathologies. Biotechnological tools for pathological management are proposed.Fil: Garay, Yohana Camila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Cejas, Romina Beatríz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Lorenz, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Salud y Ambiente del Litoral. Universidad Nacional del Litoral. Instituto de Salud y Ambiente del Litoral; ArgentinaFil: Zlocowski, Natacha. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Ciencias de la Salud. Universidad Nacional de Córdoba. Instituto de Investigaciones en Ciencias de la Salud; ArgentinaFil: Parodi, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Ferrero, Franco Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Angeloni, Genaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Alfonso García, Valentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Sendra, Victor German. Tufts University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lardone, Ricardo Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Irazoqui, Fernando Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentin

    Topical Leukocyte Function-Associated Antigen-1 (LFA-1) Antagonist Treatment (Lifitegrast) Suggest that Immune Synapsis and T cell Adhesion in Limbal Vessels is affected during DED

    No full text
    Purpose : The leukocyte function-associated antigen-1 (LFA-1) binds to the intercellular adhesion molecule (ICAM) family, with its principal ligand being ICAM-1. ICAM-1/LFA-1 interaction is essential for T-cell activation as well as for migration of T-cells to target tissues.The purpose of this study was to assess if LFA-1 antagonist Lifitegrast can modulate T cell activation in the dLNs, subsequently affecting T cell migration to the ocular surface during DED Methods : DED was induced in 6-8 week old wild-type mice by exposure to the controlled environmental chamber and subcutaneous injections of scopolamine. Mice were treated with topical Lifitegrast (or normal saline [NS] control) 3 times daily. To asses clinical DED severity, corneal fluorescein score (CFS) was evaluated in both groups. Corneal T cells were quantified by flow cytometry of single cell suspensions at days 10, 15 and 21. T cells from NS-treated and Lifitegrast-treated DED mice were used as donors for adoptive transfer experiments to NS-treated DED mice (recipients). Protein levels of interleukin (IL)-1b, IL-6, IL-10, IL-17, interferon (IFN)-g, and tumor necrosis factor (TNF)-awere measured in tear samples using Bio-plex Results : Lifitegrast-treatment of DED mice resulted in significant reduction of CFS and in reduced corneal T cells as compared to the NS group by flow cytometry at days 15 and 21 (p<0.05). Limbal vascular sticking efficacy (adhesion) of donor T cells from a DED mice was increased in recipient DED mice at days 15 (62±12)% and 21 (54±6)%. Donor T cells from Lifitegrast-treated (9 ±4)% were comparable to T cells from naïve donor (5±3)% mice (p<0.001). The cytokines IFN-g (75±12) pg/ml, (52±14) pg/ml, (47±15) pg/ml and IL-17 (40±14) pg/ml, (37±9) pg/ml, (69±10) pg/ml were increased, in tears of NS-treated DED mice at days 10, 15 and 21 respectively. While they were reduced in Lifitegrast-treated DED mice (22 ±8) pg/ml, (18±12) pg/ml, (12±8) pg/ml and (10±4) pg/ml, (15±9) pg/ml, (18±8) pg/ml for IFN-g and IL-17 respectively (p<0.05) Conclusions : Lifitegrast treatment results in decreased corneal T cell migration and pro-inflammatory tear cytokines in DED. Adoptive transfer experiments suggest that topical Lifitegrast may be reaching dLN and potentially affecting T cell activation and subsequent T cell adhesion to limbal vessels.Fil: Ortiz Gustavo. Tufts Medical Center; Estados UnidosFil: Jamali Arsia. Tufts Medical Center; Estados UnidosFil: Sendra, Victor German. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Patología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hamrah Pedram. Tufts Medical Center; Estados UnidosARVO Annual Meeting 2019VancouverCanadáAssociation for Research in Vision and Ophthalmolog

    Local Adoptive Transfer of Plasmacytoid Dendritic Cells as a Novel Therapeutic Approach for Corneal Neovascularization

    No full text
    Purpose : We have recently shown that plasmacytoid dendritic cells (pDCs) exert angiostatic properties. The aim of this study is to evaluate the therapeutic efficacy of local adoptive transfer of pDCs in treating corneal neovascularization (NV). Methods : Corneas of 6-8 week-old male wildtype (WT) C57BL/6 mice underwent suture placement to induce corneal NV. Splenic GFP+ pDCs from DPE-GFP×RAG1-/- mice and WT CD11b+ myeloid cells were isolated. After trephination, 104 pDCs, CD11b+ cells, or PBS control were locally applied onto the corneas using Tisseel fibrin sealant. On day 7, corneas were stained for CD31 (vascular marker) and underwent confocal microscopy. Length of NV and the density of adoptively-transferred GFP+ pDCs were measured by ImageJ. Relative mRNA level of anti-angiogenic molecule endostatin was quantified in the corneas using qRT-PCR. ANOVA with LSD post-hoc test was used to assess statistical significance. p<0.05 was considered significant. Results : Confocal microscopy confirmed successful transfer of GFP+ pDCs to both central (452.8±39.1 cells/mm2) and peripheral corneas (435.1±52.6) on day 2 following local application of pDCs. qRT-PCR showed that local adoptive transfer of pDCs was accompanied by 4.7-fold increase in the mRNA level of anti-angiogenic molecule endostatin compared with fibrin sealant-only control (p=0.009) and 2.3-fold increase compared with adoptive transfer of CD11b+ cells (p=0.03). One-time adoptive transfer of pDCs significantly reduced NV length on day 7 following suture placement (350.1±43.4 µm), compared with transfer of CD11b+ cells (477.0±33.9 µm; p=0.004) as well as fibrin sealant-only controls (454.1±36.5 µm; p=0.01). Conclusions : Local adoptive transfer of pDCs can limit corneal NV following suture placement and may serve as a novel cell-based therapeutic approach to treat corneal NV.Fil: Arsia, Jamali. Tufts Medical Center; Estados UnidosFil: Lopez, Maria J.. Tufts Medical Center; Estados UnidosFil: Harris, Deshea L. Tufts Medical Center; Estados UnidosFil: Sendra, Victor German. Tufts Medical Center; Estados Unidos. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Patología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pondelis, Nicholas. Tufts Medical Center; Estados UnidosFil: Ortiz, Gustavo. Tufts Medical Center; Estados UnidosFil: Hamrah, Pedram. Tufts Medical Center; Estados Unidos. New England Eye Center; Estados UnidosARVO annual meeting 2019VancouverCanadáAssociation for Research in Vision and Ophthalmolog

    Evaluation of the osmoprotective and bioprotective effect of trehalose 3%

    No full text
    Purpose: The purpose of this study was to study the osmoprotective and bioprotective effect of trehalose 3% + carboxymethylcellulose (CMC) 0.5% during desiccation conditions.Materials and Methods: Normal human conjunctival epithelial cells (IOBA) were exposed to (1) culture media (control); (2) CMC 0.5% + glycerin 0. 9% + polyethylene glycol 400 0.25% (vehicle); and (3) vehicle + trehalose 3% (trehalose). Cells were treated for 1 h and then exposed to desiccating conditions. Metabolic activity was evaluated by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay and cell viability by trypan blue. Trehalose water retention capability was assessed by a gravimetric analysis. Results: Metabolic activity was maintained during the first 30 min under desiccating conditions with no differences found between groups. After 45 min, metabolic activity decreased both in the control group and the vehicle group, while the trehalose group maintained activity values. Cell viability of the trehalose group was maintained throughout time and was statistically superior to those of the control and the vehicle groups at all evaluated times (P < 0.01). The retention time 20‐RT20 ‐ (20% of water retention) was reached at 8 min in the control group, 10 min in the vehicle group, and 15 min in the trehalose group. Conclusions: The addition of 3% trehalose prolonged cell viability and extended water retention time in high‐dryness environmental conditions.Fil: Sendra, Victor German. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Patología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Berra, Alejandro. Gobierno de la Provincia de Buenos Aires. Hospital El Cruce Doctor Néstor Carlos Kirchner. Centro de Medicina Traslacional; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Patología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Michelini, Flavia Mariana. Gobierno de la Provincia de Buenos Aires. Hospital El Cruce Doctor Nestor Carlos Kirchner. Centro de Medicina Traslacional.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Guerbi, Maria Ximena. Gobierno de la Provincia de Buenos Aires. Hospital El Cruce Doctor Nestor Carlos Kirchner. Centro de Medicina Traslacional.; ArgentinaFil: Rodriguez, Giselle Adela. Gobierno de la Provincia de Buenos Aires. Hospital El Cruce Doctor Nestor Carlos Kirchner. Centro de Medicina Traslacional.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: del Papa, Melina Sol. Laboratorios Poen Sociedad Anonima Unipersonal .; ArgentinaFil: Passerini, María Silvia. Laboratorios Poen Sociedad Anonima Unipersonal .; Argentin

    Catalytic and glycan-binding abilities of ppGalNAc-T2 are regulated by acetylation

    Get PDF
    Post-translational acetylation is an important molecular regulatory mechanism affecting the biological activity of proteins. Polypeptide GalNAc transferases (ppGalNAc-Ts) are a family of enzymes that catalyze initiation of mucin-type O-glycosylation. All ppGalNAc-Ts in mammals are type II transmembrane proteins having a Golgi lumenal region that contains a catalytic domain with glycosyltransferase activity, and a C-terminal R-type (" ricin-like" ) lectin domain. We investigated the effect of acetylation on catalytic activity of glycosyltransferase, and on fine carbohydrate-binding specificity of the R-type lectin domain of ppGalNAc-T2. Acetylation effect on ppGalNAc-T2 biological activity in vitro was studied using a purified human recombinant ppGalNAc-T2. Mass spectrometric analysis of acetylated ppGalNAc-T2 revealed seven acetylated amino acids (K103, S109, K111, K363, S373, K521, and S529); the first five are located in the catalytic domain. Specific glycosyltransferase activity of ppGalNAc-T2 was reduced 95% by acetylation. The last two amino acids, K521 and S529, are located in the lectin domain, and their acetylation results in alteration of the carbohydrate-binding ability of ppGalNAc-T2. Direct binding assays showed that acetylation of ppGalNAc-T2 enhances the recognition to αGalNAc residue of MUC1αGalNAc, while competitive assays showed that acetylation modifies the fine GalNAc-binding form of the lectin domain. Taken together, these findings clearly indicate that biological activity (catalytic capacity and glycan-binding ability) of ppGalNAc-T2 is regulated by acetylation. © 2011 Elsevier Inc.Fil: Zlocowski, Natacha. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Sendra, Victor German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Lorenz, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Villarreal, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Jorge, Alberto. Universidad Autónoma de Madrid; EspañaFil: Núñez, Yolanda. Universidad Autónoma de Madrid; EspañaFil: Bennett, Eric P.. Universidad de Copenhagen; DinamarcaFil: Clausen, Henrik. Universidad de Copenhagen; DinamarcaFil: Nores, Gustavo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Irazoqui, Fernando Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentin

    Staining tumor cells with biotinylated ACL-I, a lectin isolated from the marine sponge, Axinella corrugata

    No full text
    Axinella corrugata lectin 1 (ACL-1) was purifi ed from aqueous extracts of the marine sponge, Axinella corrugata . ACL-1 strongly agglutinates native rabbit erythrocytes. The hemagglutination is inhibited by N -acetyl derivatives, particularly N , N ’ , N ” -triacetylchitotriose, N -acetyl-Dglucosamine, N -acetyl-D-mannosamine and N -acetyl-D-galactosamine. We investigated the capacity of biotinylated ACL-1 to stain several transformed cell lines including breast (T-47D, MCF7), colon (HT-29), lung (H460), ovary (OVCAR-3) and bladder (T24). ACL-I may bind to both monosaccharides and oligosaccharides of tumor cells, N -acetyl-D-galactosamine, and N -acetyl-Dglucosamine glycan types. The lectins are useful, not only as markers and diagnostic parameters, but also for tissue mapping in suspicious neoplasms. In addition, they provide a better understanding of neoplasms at the cytological and molecular levels. Furthermore, the use of potential metastatic markers such as lectins is crucial for developing successful tools for therapy against cancer. We observed that biotinylated ACL-I stains tumor cells and may hold potential as a probe for identifying transformed cells and for studying glycan structures synthesized by such cells.Fil: Dresch, R. R.. Universidade Federal do Rio Grande do Sul; BrasilFil: Zanetti, G. D.. Universidade Federal do Rio Grande do Sul; BrasilFil: Irazoqui, Fernando Jose. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Quimica Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sendra, Victor German. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Quimica Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zlocowski, Natacha. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Quimica Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bernardi, A.. Universidade Federal do Rio Grande do Sul; BrasilFil: Rosa, R. M.. Universidade Luterana do Brasil; BrasilFil: Battastini, A. M. O.. Universidade Federal do Rio Grande do Sul; BrasilFil: Henriques, Amalia Teresinha. Universidade Federal do Rio Grande do Sul; BrasilFil: Vozári Hampe, M. M.. Universidade Federal do Rio Grande do Sul; Brasi
    corecore