8 research outputs found

    Application of egg shell with fortified vermicompost in Capsicum cultivation: A strategy in waste management

    Get PDF
    Purpose Chicken eggshell (ES) is a global biowaste product of poultry industry and an enriched source of calcium required for plant growth. Therefore, the present study has been carried out to assess the potentiality of the combination of ES with vermicompost (VC) and chicken feather protein hydrolysate (CFPH) on growth and yield improvement of Capsicum plants.Method A field study was conducted through randomized block design (RBD) with eight treatments having three replicates for each. Principle Component Analysis (PCA) have performed to analyze the yield related parameters of plant. Nutritional components of VC and ES were also analyzed.Results The PCA analysis of the  field experiment data has indicated that the combination of ES, CFPH and VC (in a ratio of 100:10:3) remarkably increased the agronomic parameters of capsicum plant about four folds as compared to its chemical counterpart and control, while together VC and ES strongly influences the characteristics of fruits. The first two dimensions of first and second PCA analysis showed 88.39 and 66.91 percent of the overall dataset inertia respectively, explaining 88.39 and 66.91 percent of the total variability. These two values are higher than their respective reference values of 36.32 and 46.76 percent indicating substantial variability.Conclusion The co-application of ES, CFPH with VC could enhance the yield parameters of crops by enriching the soil with both micro and macronutrients. It also serves as a source of organic compost with concomitant reduction in the use of chemical fertilizers

    Decrypting the multi-functional biological activators and inducers of defense responses against biotic stresses in plants

    Get PDF
    Plant diseases are still the main problem for the reduction in crop yield and a threat to global food security. Additionally, excessive usage of chemical inputs such as pesticides and fungicides to control plant diseases have created another serious problem for human and environmental health. In view of this, the application of plant growth-promoting rhizobacteria (PGPR) for controlling plant disease incidences has been identified as an eco-friendly approach for coping with the food security issue. In this review, we have identified different ways by which PGPRs are capable of reducing phytopathogenic infestations and enhancing crop yield. PGPR suppresses plant diseases, both directly and indirectly, mediated by microbial metabolites and signaling components. Microbial synthesized anti-pathogenic metabolites such as siderophores, antibiotics, lytic enzymes, hydrogen cyanide, and several others act directly on phytopathogens. The indirect mechanisms of reducing plant disease infestation are caused by the stimulation of plant immune responses known as initiation of systemic resistance (ISR) which is mediated by triggering plant immune responses elicited through pathogen-associated molecular patterns (PAMPs). The ISR triggered in the infected region of the plant leads to the development of systemic acquired resistance (SAR) throughout the plant making the plant resistant to a wide range of pathogens. A number of PGPRs including Pseudomonas and Bacillus genera have proven their ability to stimulate ISR. However, there are still some challenges in the large-scale application and acceptance of PGPR for pest and disease management. Further, we discuss the newly formulated PGPR inoculants possessing both plant growth-promoting activities and plant disease suppression ability for a holistic approach to sustaining plant health and enhancing crop productivity

    Body composition changes and its association with dyslipidemia in patients receiving hemodialysis

    No full text
    Problem considered: The study aimed to assess the body composition changes after dialysis in chronic kidney disease (CKD) patients undergoing hemodialysis and to determine the strengths of relationships between various body composition parameters and blood lipid levels in these patients. Methods: The cross-sectional study was conducted during May–September 2019 involving 97 patients (58 males and 39 females, age: 40–70 years) of CKD undergoing maintenance hemodialysis. The multifrequency bioelectrical impedance analyzer was used to measure various body composition parameters like body fat percent, lean mass percent, body mass index, body fat mass index, fat-free mass index, total body water percent, extracellular water percent, intracellular water percent, nutrition index, prediction marker, basal metabolic rate, and estimated average energy requirement. Blood lipid levels were collected from the patients’ clinical records. Results: All the body composition parameters except nutrition index and prediction marker differed significantly before and after dialysis. Various body composition parameters were significantly correlated with one or more lipid levels before and after dialysis. Conclusion: The body composition parameters change significantly after hemodialysis among CKD patients. Our findings suggest that body composition parameters, whether measured before or after dialysis could be useful in assessing dyslipidemia in patients receiving hemodialysis

    Synergistic Modulation of Seed Metabolites and Enzymatic Antioxidants Tweaks Moisture Stress Tolerance in Non-Cultivated Traditional Rice Genotypes during Germination

    No full text
    Traditional rice landraces are treasures for novel genes to develop climate-resilient cultivars. Seed viability and germination determine rice productivity under moisture stress. The present study evaluated 100 rice genotypes, including 85 traditional landraces and 15 improved cultivars from various agro-ecological zones of Tamil Nadu, along with moisture-stress-susceptible (IR 64) and moisture-stress-tolerant (IR 64 Drt1) checks. The landraces were screened over a range of osmotic potentials, namely (−) 1.0 MPa, (−) 1.25 MPa and (−) 1.5 MPa, for a period of 5 days in PEG-induced moisture stress. Physio-morphological traits, such as rate of germination, root and shoot length, vigor index, R/S ratio and relative water content (RWC), were assessed during early moisture stress at the maximum OP of (−) 1.5 MPa. The seed macromolecules, phytohormones (giberellic acid, auxin (IAA), cytokinin and abscisic acid), osmolytes and enzymatic antioxidants (catalase and superoxide dismutase) varied significantly between moisture stress and control treatments. The genotype Kuliyadichan registered more IAA and giberellic acid (44% and 35%, respectively, over moisture-stress-tolerant check (IR 64 Drt1), whereas all the landraces showed an elevated catalase activity, thus indicating that the tolerant landraces effectively eliminate oxidative damages. High-performance liquid chromatography analysis showed a reduction in cytokinin and an increase in ABA level under induced moisture stress. Hence, the inherent moisture-stress tolerance of six traditional landraces, such as Kuliyadichan, Rajalakshmi, Sahbhagi Dhan, Nootripathu, Chandaikar and Mallikar, was associated with metabolic responses, such as activation of hydrolytic enzymes, hormonal crosstalk, ROS signaling and antioxidant enzymes (especially catalase), when compared to the susceptible check, IR 64. Hence, these traditional rice landraces can serve as potential donors for introgression or pyramiding moisture-stress-tolerance traits toward developing climate-resilient rice cultivars

    Not Available

    No full text
    Not AvailablePlant-microbe interactions can be either beneficial or harmful depending on the nature of the interaction. Multifaceted benefits of plant-associated microbes in crops are well documented. Specifically, the management of plant diseases using beneficial microbes is considered to be eco-friendly and the best alternative for sustainable agriculture. Diseases caused by various phytopathogens are responsible for a significant reduction in crop yield and cause substantial economic losses globally. In an ecosystem, there is always an equally daunting challenge for the establishment of disease and development of resistance by pathogens and plants, respectively. In particular, comprehending the complete view of the complex biological systems of plant-pathogen interactions, co-evolution and plant growth promotions (PGP) at both genetic and molecular levels requires novel approaches to decipher the function of genes involved in their interaction. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 (CRISPR-associated protein 9) is a fast, emerging, precise, ecofriendly and efficient tool to address the challenges in agriculture and decipher plant-microbe interaction in crops. Nowadays, the CRISPR/Cas9 approach is receiving major attention in the field of functional genomics and crop improvement. Consequently, the present review updates the prevailing knowledge in the deployment of CRISPR/Cas9 techniques to understand plant-microbe interactions, genes edited for the development of fungal, bacterial and viral disease resistance, to elucidate the nodulation processes, plant growth promotion, and future implications in agriculture. Further, CRISPR/Cas9 would be a new tool for the management of plant diseases and increasing productivity for climate resilience farming.Not Availabl

    Understanding the Plant-microbe Interactions in CRISPR/Cas9 Era: Indeed a Sprinting Start in Marathon

    No full text
    corecore