618 research outputs found

    The influence of nano-architectured CeOx supports in RhPd/CeO2 for the catalytic ethanol steam reforming reaction

    Get PDF
    The ethanol steam reforming (ESR) reaction has been tested over RhPd supported on polycrystalline ceria in comparison to structured supports composed of nanoshaped CeO2 cubes and CeO2 rods tailored toward the production of hydrogen. At 650-700 K the hydrogen yield follows the trend RhPd/CeO(2)cubes >RhPd/CeO2-rods >RhPd/CeO2-polycrystalline, whereas at temperatures higher than 800K the catalytic performance of all samples is similar and close to the thermodynamic equilibrium. The improved performance of RhPd/CeO2-cubes and RhPd/CeO2-rods for ESR at low temperature is mainly ascribed to higher water-gas shift activity and a strong interaction between the bimetallic-oxide support interaction. STEM analysis shows the existence of RhPd alloyed nanoparticles in all samples, with no apparent relationship between ESR performance and RhPd particle size. X-ray diffraction under operating conditions shows metal reorganization on {1 0 0} and {1 1 0} ceria crystallographic planes during catalyst activation and ESR, but not on {1 1 1} ceria crystallographic planes. The RhPd reconstructing and tuned activation over ceria nanocubes and nanorods is considered the main reason for better catalytic activity with respect to conventional catalysts based on polycrystalline ceria. (C) 2015 Elsevier B.V. All rights reserved.Postprint (author's final draft

    Extraction of Scandium (III) from acidic solutions using organo-phosphoric acid reagents: A comparative study

    Get PDF
    Comparative and synergistic solvent extraction of Sc(III) using two phosphoric acidic reagents such as di-(2-ethyhexyl) phosphoric acid and 2,4,4,tri-methyl,pentyl-phosphinic acid was investigated. Slope analysis method suggests a cation exchange reaction of Sc(III) with both extractants at a molar ratio of extractant: Sc(III) = 2.5:1 at equilibrium pH< 1.5. The plot of log D vs. log [Extractant] yield the slope (n) value as low as 1.2-1.3 and as high as n=7 at low and high extrcatant concentration level, respectively. Extraction isotherm study predicted the need of 2 stages at A: O=1:4 and A: O=1:3 using 0.1 M D2EHPA and 0.1 M Cyanex 272, respectively. Stripping of Sc (III) was carried out at varied NaOH concentration to ascertain the optimum stripping condition for effective enrichment of metal. The predicted stripping condition (2)-stages with A: O=1:3 and 1:4 for D2EHPA and Cyanex 272, respectively) obtained from Mc-Cabe Thiele plot was further validated by 6-cycles CCS study. An actual leach solution of Mg-Sc alloy bearing 1.0 g/L of Sc (III), 2.5 g/L of Mg and 0.2 M HCl was subjected for selective separation of Sc at the optimum condition. The counter current simulation (CCS) study for both extraction and stripping of actual solution resulted quantitative separation of Sc with ∼12 fold enrichment. The organic phase before and after loading of Sc (III) along with the diluents was characterized by FTIR to ascertain the phase transportation of Sc (III)

    Visible light-driven H2 production over highly dispersed Ruthenia on Rutile TiO2 nanorods

    Get PDF
    The immobilization of miniscule quantities of RuO2 (~0.1%) onto one-dimensional (1D) TiO2 nanorods (NRs) allows H2 evolution from water under visible light irradiation. Rod-like rutile TiO2 structures, exposing preferentially (110) surfaces, are shown to be critical for the deposition of RuO2 to enable photocatalytic activity in the visible region. The superior performance is rationalized on the basis of fundamental experimental studies and theoretical calculations, demonstrating that RuO2(110) grown as 1D nanowires on rutile TiO2(110), which occurs only at extremely low loads of RuO2, leads to the formation of a heterointerface that efficiently adsorbs visible light. The surface defects, band gap narrowing, visible photoresponse, and favorable upward band bending at the heterointerface drastically facilitate the transfer and separation of photogenerated charge carriers.Peer ReviewedPostprint (published version

    Autonomic Function following Acute Organophosphorus Poisoning: A Cohort Study

    Get PDF
    Autonomic dysfunction after chronic low level exposure to organophosphorus (OP) pesticides has been consistently reported in the literature, but not following a single acute overdose. In order to study autonomic function after an acute OP overdose, sixty-six overdose patients were compared to 70 matched controls. Assessment of autonomic function was done by heart rate response to standing, deep breathing (HR-DB) and Valsalva manoeuvre; blood pressure (BP) response to standing and sustained hand grip; amplitude and latency of sympathetic skin response (SSR); pupil size and post-void urine volume. The patients were assessed one and six weeks after the exposure. The number of patients who showed abnormal autonomic function compared to standard cut-off values did not show statistically significantly difference from that of controls by Chi-Square test. When compared to the controls at one week the only significant differences consistent with autonomic dysfunction were change of diastolic BP 3 min after standing, HR-DB, SSR-Amplitude, SSR-Latency, post-void urine volume and size of the pupil. At 6 weeks significant recovery of autonomic function was observed and only HR-DB was decreased to a minor degree, −5 beats/min [95%CI 2–8]. This study provides good evidence for the lack of long term autonomic dysfunction following acute exposure to OP pesticides

    Monolithic InGaAs nanowire array lasers on silicon-on-insulator operating at room temperature

    Get PDF
    Chip-scale integrated light sources are a crucial component in a broad range of photonics applications. III–V semiconductor nanowire emitters have gained attention as a fascinating approach due to their superior material properties, extremely compact size, and capability to grow directly on lattice-mismatched silicon substrates. Although there have been remarkable advances in nanowire-based emitters, their practical applications are still in the early stages due to the difficulties in integrating nanowire emitters with photonic integrated circuits. Here, we demonstrate for the first time optically pumped III–V nanowire array lasers monolithically integrated on silicon-on-insulator (SOI) platform. Selective-area growth of InGaAs/InGaP core/shell nanowires on an SOI substrate enables the nanowire array to form a photonic crystal nanobeam cavity with superior optical and structural properties, resulting in the laser to operate at room temperature. We also show that the nanowire array lasers are effectively coupled with SOI waveguides by employing nanoepitaxy on a prepatterned SOI platform. These results represent a new platform for ultracompact and energy-efficient optical links and unambiguously point the way toward practical and functional nanowire lasers

    Identification of Highly Selective Surface Pathways for Methane Dry Reforming Using Mechanochemical Synthesis of Pd-CeO2

    Get PDF
    The methane dry reforming (DRM) reaction mechanism was explored via mechanochemically prepared Pd/CeO2 catalysts (PdAcCeO2M), which yield unique Pd-Ce interfaces, where PdAcCeO2M has a distinct reaction mechanism and higher reactivity for DRM relative to traditionally synthesized impregnated Pd/CeO2 (PdCeO2IW). In situ characterization and density functional theory calculations revealed that the enhanced chemistry of PdAcCeO2M can be attributed to the presence of a carbon-modified Pd0 and Ce4+/3+ surface arrangement, where distinct Pd-CO intermediate species and strong Pd-CeO2 interactions are activated and sustained exclusively under reaction conditions. This unique arrangement leads to highly selective and distinct surface reaction pathways that prefer the direct oxidation of CHx to CO, identified on PdAcCeO2M using isotope labeled diffuse reflectance infrared Fourier transform spectroscopy and highlighting linear Pd-CO species bound on metallic and C-modified Pd, leading to adsorbed HCOO [1595 cm-1] species as key DRM intermediates, stemming from associative CO2 reduction. The milled materials contrast strikingly with surface processes observed on IW samples (PdCeO2IW) where the competing reverse water gas shift reaction predominates

    Water-gas-shift over metal-free nanocrystalline ceria: an experimental and theoretical study

    Get PDF
    A tandem experimental and theoretical investigation of a mesoporous ceria catalyst reveals the properties of the metal oxide are conducive for activity typically ascribed to metals, suggesting reduced Ce3+ and oxygen vacancies are responsible for the inherent bi-functionality of CO oxidation and dissociation of water required for facilitating the production of H-2. The degree of reduction of the ceria, specifically the (100) face, is found to significantly influence the binding of reagents, suggesting reduced surfaces harbor the necessary reactive sites. The metal-free catalysis of the reaction is significant for catalyst design considerations, and the suite of in situ analyses provides a comprehensive study of the dynamic nature of the high surface area catalyst system. This study postulates feasible improvements in catalytic activity may redirect the purpose of the water-gas shift reaction from CO purification to primary hydrogen production.Peer ReviewedPostprint (author's final draft

    In situ characterization of mesoporous Co/CeO2 catalysts for the high-temperature water-gas shift

    Get PDF
    Mesoporous Co/CeO2 catalysts were found to exhibit significant activity for the high-temperature water-gas shift (WGS) reaction with cobalt loadings as low as 1 wt %. The catalysts feature a uniform dispersion of cobalt within the CeO2 fluorite type lattice with no evidence of discrete cobalt phase segregation. In situ XANES and ambient pressure XPS experiments were used to elucidate the active state of the catalysts as partially reduced cerium oxide doped with oxidized cobalt atoms. In situ XRD and DRIFTS experiments suggest facile cerium reduction and oxygen vacancy formation, particularly with lower cobalt loadings. In situ DRIFTS analysis also revealed the presence of surface carbonate and bidentate formate species under reaction conditions, which may be associated with additional mechanistic pathways for the WGS reaction. Deactivation behavior was observed with higher cobalt loadings. XANES data suggest the formation of small metallic cobalt clusters at temperatures above 400 °C may be responsible. Notably, this deactivation was not observed for the 1% cobalt loaded catalyst, which exhibited the highest activity per unit of cobalt.Peer ReviewedPostprint (author's final draft
    corecore