9 research outputs found
Species D Adenoviruses as Oncolytics against B-cell Cancers
Purpose: Oncolytic viruses are self-amplifying anticancer agents that make use of the natural ability of viruses to kill cells. Adenovirus serotype 5 (Ad5) has been extensively tested against solid cancers, but less so against B-cell cancers because these cells do not generally express the coxsackie and adenoviral receptor (CAR). To determine whether other adenoviruses might have better potency, we mined the adenovirus virome of 55 serotypes for viruses that could kill B-cell cancers.
Experimental Design: Fifteen adenoviruses selected to represent Ad species B, C, D, E, and F were tested in vitro against cell lines and primary patient B-cell cancers for their ability to infect, replicate in, and kill these cells. Select viruses were also tested against B-cell cancer xenografts in immunodeficient mice.
Results: Species D adenoviruses mediated most robust killing against a range of B-cell cancer cell lines, against primary patient marginal zone lymphoma cells, and against primary patient CD138Ăľ myeloma cells in vitro. When injected into xenografts in vivo, single treatment with select species D viruses Ad26 and Ad45 delayed lymphoma growth.
Conclusions: Relatively unstudied species Dadenoviruses have a unique ability to infect and replicate in B-cell cancers as compared with other adenovirus species. These data suggest these viruses have unique biology in B cells and support translation of novel species D adenoviruses as oncolytics against B-cell cancers
Comparison of Replication-Competent, First Generation, and Helper-Dependent Adenoviral Vaccines
All studies using human serotype 5 Adenovirus (Ad) vectors must address two major obstacles: safety and the presence of pre-existing neutralizing antibodies. Helper-Dependent (HD) Ads have been proposed as alternative vectors for gene therapy and vaccine development because they have an improved safety profile. To evaluate the potential of HD-Ad vaccines, we compared replication-competent (RC), first-generation (FG) and HD vectors for their ability to induce immune responses in mice. We show that RC-Ad5 and HD-Ad5 vectors generate stronger immune responses than FG-Ad5 vectors. HD-Ad5 vectors gave lower side effects than RC or FG-Ad, producing lower levels of tissue damage and anti-Ad T cell responses. Also, HD vectors have the benefit of being packaged by all subgroup C serotype helper viruses. We found that HD serotypes 1, 2, 5, and 6 induce anti-HIV responses equivalently. By using these HD serotypes in heterologous succession we showed that HD vectors can be used to significantly boost anti-HIV immune responses in mice and in FG-Ad5-immune macaques. Since HD vectors have been show to have an increased safety profile, do not possess any Ad genes, can be packaged by multiple serotype helper viruses, and elicit strong anti-HIV immune responses, they warrant further investigation as alternatives to FG vectors as gene-based vaccines
Species D Adenoviruses as Oncolytics against B-cell Cancers
Purpose: Oncolytic viruses are self-amplifying anticancer agents that make use of the natural ability of viruses to kill cells. Adenovirus serotype 5 (Ad5) has been extensively tested against solid cancers, but less so against B-cell cancers because these cells do not generally express the coxsackie and adenoviral receptor (CAR). To determine whether other adenoviruses might have better potency, we mined the adenovirus virome of 55 serotypes for viruses that could kill B-cell cancers.
Experimental Design: Fifteen adenoviruses selected to represent Ad species B, C, D, E, and F were tested in vitro against cell lines and primary patient B-cell cancers for their ability to infect, replicate in, and kill these cells. Select viruses were also tested against B-cell cancer xenografts in immunodeficient mice.
Results: Species D adenoviruses mediated most robust killing against a range of B-cell cancer cell lines, against primary patient marginal zone lymphoma cells, and against primary patient CD138Ăľ myeloma cells in vitro. When injected into xenografts in vivo, single treatment with select species D viruses Ad26 and Ad45 delayed lymphoma growth.
Conclusions: Relatively unstudied species D adenoviruses have a unique ability to infect and replicate in B-cell cancers as compared with other adenovirus species. These data suggest these viruses have unique biology in B cells and support translation of novel species D adenoviruses as oncolytics against B-cell cancers
Species D Adenoviruses as Oncolytics against B-cell Cancers
Purpose: Oncolytic viruses are self-amplifying anticancer agents that make use of the natural ability of viruses to kill cells. Adenovirus serotype 5 (Ad5) has been extensively tested against solid cancers, but less so against B-cell cancers because these cells do not generally express the coxsackie and adenoviral receptor (CAR). To determine whether other adenoviruses might have better potency, we mined the adenovirus virome of 55 serotypes for viruses that could kill B-cell cancers.
Experimental Design: Fifteen adenoviruses selected to represent Ad species B, C, D, E, and F were tested in vitro against cell lines and primary patient B-cell cancers for their ability to infect, replicate in, and kill these cells. Select viruses were also tested against B-cell cancer xenografts in immunodeficient mice.
Results: Species D adenoviruses mediated most robust killing against a range of B-cell cancer cell lines, against primary patient marginal zone lymphoma cells, and against primary patient CD138Ăľ myeloma cells in vitro. When injected into xenografts in vivo, single treatment with select species D viruses Ad26 and Ad45 delayed lymphoma growth.
Conclusions: Relatively unstudied species Dadenoviruses have a unique ability to infect and replicate in B-cell cancers as compared with other adenovirus species. These data suggest these viruses have unique biology in B cells and support translation of novel species D adenoviruses as oncolytics against B-cell cancers
Species D Adenoviruses as Oncolytics against B-cell Cancers
PURPOSE: Oncolytic viruses are self-amplifying anti-cancer agents that make use of the natural ability of viruses to kill cells. Adenovirus serotype 5 (Ad5) has been extensively tested against solid cancers, but less so against B cell cancers since these cells do not generally express the coxsackie and adenoviral receptor (CAR). To determine if other adenoviruses might have better potency, we “mined” the adenovirus virome of 55 serotypes for viruses that could kill B cell cancers. EXPERIMENTAL DESIGN: 15 adenoviruses selected to represent Ad species B, C, D, E, and F were tested in vitro against cell lines and primary patient B cell cancers for their ability to infect, replicate in, and kill these cells. Select viruses were also tested against B cell cancer xenografts in immunodeficient mice. RESULTS: Species D adenoviruses mediated most robust killing against a range of B cell cancer cell lines, against primary patient marginal zone lymphoma cells, and against primary patient CD138+ myeloma cells in vitro. When injected into xenografts in vivo, single treatment with select species D viruses Ad26 and Ad45 delayed lymphoma growth. CONCLUSIONS: Relatively unstudied species D adenoviruses have a unique ability to infect and replicate in B cell cancers as compared to other adenovirus species. These data suggest these viruses have unique biology in B cells and support translation of novel species D adenoviruses as oncolytics against B cell cancers
Adeno-Associated Virus Serotype 8 Gene Transfer Rescues a Neonatal Lethal Murine Model of Propionic Acidemia
Propionic acidemia (PA) is an autosomal recessive disorder of metabolism caused by a deficiency of propionyl-coenzyme A carboxylase (PCC). Despite optimal dietary and cofactor therapy, PA patients still suffer from lethal metabolic instability and experience multisystemic complications. A murine model of PA (Pcca–/–) of animals that uniformly die within the first 48 hr of life was used to determine the efficacy of adeno-associated viral (AAV) gene transfer as a potential therapy for PA. An AAV serotype 8 (AAV8) vector was engineered to express the human PCCA cDNA and delivered to newborn mice via an intrahepatic injection. Greater than 64% of the Pcca–/– mice were rescued after AAV8-mediated gene transfer and survived until day of life 16 or beyond. Western analysis of liver extracts showed that PCC was completely absent from Pcca–/– mice but was restored to greater than wild-type levels after AAV gene therapy. The treated Pcca–/– mice also exhibited markedly reduced plasma levels of 2-methylcitrate compared with the untreated Pcca–/– mice, which indicates significant PCC enzymatic activity was provided by gene transfer. At the time of this report, the oldest treated Pcca–/– mice are over 6 months of age. In summary, AAV gene delivery of PCCA effectively rescues Pcca–/– mice from neonatal lethality and substantially ameliorates metabolic markers of the disease. These experiments demonstrate a gene transfer approach using AAV8 that might be used as a treatment for PA, a devastating and often lethal disorder desperately in need of new therapeutic options
Infection and Killing of Multiple Myeloma by Adenoviruses
Oncolytic virotherapy makes use of the natural ability of viruses to infect and kill cancer cells. Adenovirus serotype 5 (Ad5) has been approved for use in humans as a therapy for solid cancers. In this study, we have tested whether Ad5 and low-seroprevalence adenoviruses can be used as oncolytics for multiple myeloma (MM). We show that Ad5 productively infects most myeloma cell lines, replicates to various degrees, and mediates oncolytic cell killing in vitro and in vivo. Comparison of Ad5 with low-seroprevalence Ads on primary marrow samples from MM patients revealed striking differences in the abilities of different adenoviral serotypes to kill normal CD138– cells and CD138+ MM cells. Ad5 and Ad6 from species C and Ad26 and Ad48 from species D all mediated killing of CD138+ cells with low-level killing of CD138– cells. In contrast, Ad11, Ad35, Ad40, and Ad41 mediated weak oncolytic effects in all of the cells. Comparison of cell binding, cell entry, and replication revealed that Ad11 and Ad35 bound MM cells 10 to 100 times better than other serotypes. However, after this efficient interaction, Ad11 and Ad35 viral DNA was not replicated and cell killing did not occur. In contrast, Ad5, Ad6, Ad26, and Ad48 all replicated 10- to 100-fold in MM cells and this correlated with cell killing. These data suggest that Ad5 and other low-seroprevalence adenoviruses may have utility as oncolytic agents against MM and other hematologic malignancies