497 research outputs found

    Proximate composition of five species of flat fishes

    Get PDF
    Five species of flat fishes, namely Cynoglossus semifaciatus, C. lida, C. bilineatus, C. macrolepidotus and Psettodes erumei caught in trawlers off Mangalore were analysed for proximate composition of different body parts. These data are discussed in terms of their variability and applications. In whole body of C. lida and C. semifaciatus mean values for moisture, protein, fat and ash content on dry basis respectively were 75.9%, 75.3%, 7.1%, 16.1% and 78.9%, 75.6%. 7.9% and 16.6%. Mean values of these constituents of edible parts in the same order for C. semifaciatus and Psettodes erumei were 77.3%, 80.7%, 7.8%, 10.8% and 77.4%, 86.2%, 3.5% and 11.1% respectively

    CHL Dyons and Statistical Entropy Function from D1-D5 System

    Get PDF
    We give a proof of the recently proposed formula for the dyon spectrum in CHL string theories by mapping it to a configuration of D1 and D5-branes and Kaluza-Klein monopole. We also give a prescription for computing the degeneracy as a systematic expansion in inverse powers of charges. The computation can be formulated as a problem of extremizing a duality invariant statistical entropy function whose value at the extremum gives the logarithm of the degeneracy. During this analysis we also determine the locations of the zeroes and poles of the Siegel modular forms whose inverse give the dyon partition function in the CHL models.Comment: LaTeX file, 48 pages; v2: typos correcte

    Dyon Spectrum in N=4 Supersymmetric Type II String Theories

    Get PDF
    We compute the spectrum of quarter BPS dyons in freely acting Z_2 and Z_3 orbifolds of type II string theory compactified on a six dimensional torus. For large charges the result for statistical entropy computed from the degeneracy formula agrees with the corresponding black hole entropy to first non-leading order after taking into account corrections due to the curvature squared terms in the effective action. The result is significant since in these theories the entropy of a small black hole, computed using the curvature squared corrections to the effective action, fails to reproduce the statistical entropy associated with elementary string states.Comment: LaTeX file, 32 pages; v2:minor change

    Three String Junction and N=4 Dyon Spectrum

    Get PDF
    The exact spectrum of dyons in a class of N=4 supersymmetric string theories gives us information about dyon spectrum in N=4 supersymmetric gauge theories. This in turn can be translated into prediction about the BPS spectrum of three string junctions on a configuration of three parallel D3-branes. We show that this prediction agrees with the known spectrum of three string junction in different domains in the moduli space separated by walls of marginal stability.Comment: LaTeX file, 14 page

    Dyon Death Eaters

    Get PDF
    We study general two-body decays of primitive and non-primitive 1/4-BPS dyons in four-dimensional type IIB string compactifications. We find a ``master equation'' for marginal stability that generalises the curve found by Sen for half-BPS decay, and analyse this equation in a variety of cases including decays to 1/4-BPS products. For half-BPS decays, an interesting and useful relation is exhibited between walls of marginal stability and the mathematics of Farey sequences and Ford circles. We exhibit an example in which two curves of marginal stability intersect in the interior of moduli space.Comment: 24 pages, 1 figure, v2: section on non-primitive dyons slightly modified and expanded, few other small change

    How Do Black Holes Predict the Sign of the Fourier Coefficients of Siegel Modular Forms?

    Get PDF
    Single centered supersymmetric black holes in four dimensions have spherically symmetric horizon and hence carry zero angular momentum. This leads to a specific sign of the helicity trace index associated with these black holes. Since the latter are given by the Fourier expansion coefficients of appropriate meromorphic modular forms of Sp(2,Z) or its subgroup, we are led to a specific prediction for the signs of a subset of these Fourier coefficients which represent contributions from single centered black holes only. We explicitly test these predictions for the modular forms which compute the index of quarter BPS black holes in heterotic string theory on T^6, as well as in Z_N CHL models for N=2,3,5,7.Comment: LaTeX file, 17 pages, 1 figur

    On the dyon partition function in N=2 theories

    Full text link
    We study the entropy function of two N =2 string compactifications obtained as freely acting orbifolds of N=4 theories : the STU model and the FHSV model. The Gauss-Bonnet term for these compactifications is known precisely. We apply the entropy function formalism including the contribution of this four derivative term and evaluate the entropy of dyons to the first subleading order in charges for these models. We then propose a partition function involving the product of three Siegel modular forms of weight zero which reproduces the degeneracy of dyonic black holes in the STU model to the first subleading order in charges. The proposal is invariant under all the duality symmetries of the STU model. For the FHSV model we write down an approximate partition function involving a Siegel modular form of weight four which captures the entropy of dyons in the FHSV model in the limit when electric charges are much larger than magnetic charges.Comment: 48 page

    Adding Charges to N=4 Dyons

    Get PDF
    The spectrum of dyons in a class of N=4 supersymmetric string theories has been found for a specific set of electric and magnetic charge vectors. We extend the analysis to more general charge vectors by considering various charge carrying collective excitations of the original system.Comment: LaTeX file, 16 page

    Walls of Marginal Stability and Dyon Spectrum in N=4 Supersymmetric String Theories

    Get PDF
    The spectrum of quarter BPS dyons in N=4 supersymmetric string theories can change as the asymptotic moduli cross walls of marginal stability on which the dyon can break apart into a pair of half BPS states. In this paper we classify these marginal stability walls and examine this phenomenon in the context of exact dyon spectrum found in a class of N=4 supersymmetric string theories. We argue that the dyon partition functions in different domains separated by marginal stability walls are the same, but the choice of integration contour needed for extracting the degeneracies from the partition function differ in these different regions. We also find that in the limit of large charges the change in the degeneracy is exponentially suppressed compared to the leading contribution. This is consistent with the fact that in the computation of black hole entropy we do not encounter any change as the asymptotic moduli fields move across the walls of marginal stability. Finally we carry out some tests of S-duality invariance in the theory.Comment: LateX file, 1 figure, 42 pages; v2 more tests of S-duality added with complete proof for all N<7; v3: minor change

    Dyon Spectrum in Generic N=4 Supersymmetric Z_N Orbifolds

    Get PDF
    We find the exact spectrum of a class of quarter BPS dyons in a generic N=4 supersymmetric Z_N orbifold of type IIA string theory on K3\times T^2 or T^6. We also find the asymptotic expansion of the statistical entropy to first non-leading order in inverse power of charges and show that it agrees with the entropy of a black hole carrying same set of charges after taking into account the effect of the four derivative Gauss-Bonnet term in the effective action of the theory.Comment: LaTeX file, 39 pages; minor change
    • …
    corecore