263 research outputs found

    Rolling tachyon in anti-de Sitter space-time

    Get PDF
    We study the decay of the unstable D-particle in three-dimensional anti-de Sitter space-time using worldsheet boundary conformal field theory methods. We test the open string completeness conjecture in a background for which the phase space available is only field-theoretic. This could present a serious challenge to the claim. We compute the emission of closed strings in the AdS(3) x S^3 x T^4 background from the knowledge of the exact corresponding boundary state we construct. We show that the energy stored in the brane is mainly converted into very excited long strings. The energy stored in short strings and in open string pair production is much smaller and finite for any value of the string coupling. We find no "missing energy" problem. We compare our results to those obtained for a decay in flat space-time and to a background in the presence of a linear dilaton. Some remarks on holographic aspects of the problem are made.Comment: JHEP style, 45 pages, one figure; v2: typos corrected, references added, version to appear in JHE

    Boundary States for the Rolling D-branes in NS5 Background

    Full text link
    In this paper we construct the time dependent boundary states describing the ``rolling D-brane solutions'' in the NS5 background discovered recently by Kutasov by means of the classical DBI analysis. We first survey some aspects of non-compact branes in the NS5 background based on known boundary states in the N=2 Liouville theory. We consider two types of non-compact branes, one of which is BPS and the other is non-BPS but stable. Then we clarify how to Wick-rotate the non-BPS one appropriately. We show that the Wick-rotated boundary state realizes the correct trajectory of rolling D-brane in the classical limit, and leads to well behaved spectral densities of open strings due to the existence of non-trivial damping factors of energy. We further study the cylinder amplitudes and the emission rates of massive closed string modes.Comment: 25 pages, 2 figures, v2: typos corrected, reference added, v3: emission rates of closed strings correcte

    D-branes on a Deformation of SU(2)

    Get PDF
    We discuss D-branes on a line of conformal field theories connected by an exact marginal deformation. The line contains an SU(2) WZW model and two mutually T-dual SU(2)/U(1) cosets times a free boson. We find the D-branes preserving a U(1) isometry, an F-flux quantization condition and conformal invariance. Away from the SU(2) point a U(1) times U(1) symmetry is broken to U(1) times Z_k, i.e. continuous rotations of branes are accompanied by rotations along the branes. Requiring decoupling of the cosets from the free boson at the endpoints of the deformation breaks the continuous rotation of branes to Z_k. At the SU(2) point the full U(1) times U(1) symmetry is restored. This suggests the occurrence of phase transitions for branes at angles in the coset model, at a semiclassical level. We also discuss briefly the orientifold planes along the deformation line.Comment: 19 pages, latex, 5 figures, references adde

    Interacting fermions in self-similar potentials

    Full text link
    We consider interacting spinless fermions in one dimension embedded in self-similar quasiperiodic potentials. We examine generalizations of the Fibonacci potential known as precious mean potentials. Using a bosonization technique and a renormalization group analysis, we study the low-energy physics of the system. We show that it undergoes a metal-insulator transition for any filling factor, with a critical interaction that strongly depends on the position of the Fermi level in the Fourier spectrum of the potential. For some positions of the Fermi level the metal-insulator transition occurs at the non interacting point. The repulsive side is an insulator with a gapped spectrum whereas in the attractive side the spectrum is gapless and the properties of the system are described by a Luttinger liquid. We compute the transport properties and give the characteristic exponents associated to the frequency and temperature dependence of the conductivity.Comment: 18 pages, 10 EPS figure

    Bulk viscosity driving the acceleration of the Universe

    Full text link
    The possibility that the present acceleration of the universe is driven by a kind of viscous fluid is exploited. At background level this model is similar to the generalized Chaplygin gas model (GCGM). But, at perturbative level, the viscous fluid exhibits interesting properties. In particular the oscillations in the power spectrum that plagues the GCGM are not present. Possible fundamental descriptions for this viscous dark energy are discussed.Comment: Latex file, 8 pages, 3 eps figure

    Deviation From \Lambda CDM With Cosmic Strings Networks

    Full text link
    In this work, we consider a network of cosmic strings to explain possible deviation from \Lambda CDM behaviour. We use different observational data to constrain the model and show that a small but non zero contribution from the string network is allowed by the observational data which can result in a reasonable departure from \Lambda CDM evolution. But by calculating the Bayesian Evidence, we show that the present data still strongly favour the concordance \Lambda CDM model irrespective of the choice of the prior.Comment: 15 Pages, Latex Style, 4 eps figures, Revised Version, Accepted for publication in European Physical Journal

    Liouville D-branes in Two-Dimensional Strings and Open String Field Theory

    Get PDF
    We study open strings in the noncritical c=1c=1 bosonic string theory compactified on a circle at self-dual radius. These strings live on D-branes that are extended along the Liouville direction ({\it FZZT} branes). We present explicit expressions for the disc two- and three-point functions of boundary operators in this theory, as well as the bulk-boundary two-point function. The expressions obtained are divergent because of resonant behaviour at self-dual radius. However, these can be regularised and renormalized in a precise way to get finite results. The boundary correlators are found to depend only on the differences of boundary cosmological constants, suggesting a fermionic behaviour. We initiate a study of the open-string field theory localised to the physical states, which leads to an interesting matrix model.Comment: 29 pages, harvma

    Thermodynamics of Modified Chaplygin Gas and Tachyonic Field

    Full text link
    Here we generalize the results of the work of ref. [10] in modified Chaplygin gas model and tachyonic field model. Here we have studied the thermodynamical behaviour and the equation of state in terms of volume and temperature for both models. We have used the solution and the corresponding equation of state of our previous work [12] for tachyonic field model. We have also studied the thermodynamical stability using thermal equation of state for the tachyonic field model and have shown that there is no critical points during thermodynamical expansion. The determination of TT_{*} due to expansion for the tachyonic field have been discussed by assuming some initial conditions. Here, the thermal quantities have been investigated using some reduced parameters.Comment: 10 page

    Anisotropy of the Upper Critical Field and Critical Current in Single Crystal MgB2_2

    Get PDF
    We report on specific heat, high magnetic field transport and acac-susceptibility measurements on magnesium diboride single crystals. The upper critical field Hc2H_{c2} for magnetic fields perpendicular and parallel to the Mg and B planes is presented for the first time in the entire temperature range. A very different temperature dependence has been observed in the two directions which yields to a temperature dependent anisotropy with Γ\Gamma \sim 5 at low temperatures and about 2 near TcT_c. A peak effect is observed in susceptibility measurements for HH \sim 2 T parallel to the cc-axis and the critical current density presnts a sharp maximum for HH parallel to the ab-plane.Comment: 6 pages, 5 figure

    Statefinder Parameter for Varying G in Three Fluid System

    Full text link
    In this work, we have considered variable G in flat FRW universe filled with the mixture of dark energy, dark matter and radiation. If there is no interaction between the three fluids, the deceleration parameter and statefinder parameters have been calculated in terms of dimensionless density parameters which can be fixed by observational data. Also the interaction between three fluids has been analyzed due to constant GG. The statefinder parameters also calculated in two cases: pressure is constant and pressure is variable.Comment: 5 pages, Accepted for publication in "Astrophysics and Space Science
    corecore