21 research outputs found

    Physiological oxygen conditions enhance the angiogenic properties of extracellular vesicles from human mesenchymal stem cells

    Get PDF
    Abstract Background Following an ischemic injury to the brain, the induction of angiogenesis is critical to neurological recovery. The angiogenic benefits of mesenchymal stem cells (MSCs) have been attributed at least in part to the actions of extracellular vesicles (EVs) that they secrete. EVs are membrane-bound vesicles that contain various angiogenic biomolecules capable of eliciting therapeutic responses and are of relevance in cerebral applications due to their ability to cross the blood–brain barrier (BBB). Though MSCs are commonly cultured under oxygen levels present in injected air, when MSCs are cultured under physiologically relevant oxygen conditions (2–9% O2), they have been found to secrete higher amounts of survival and angiogenic factors. There is a need to determine the effects of MSC-EVs in models of cerebral angiogenesis and whether those from MSCs cultured under physiological oxygen provide greater functional effects. Methods Human adipose-derived MSCs were grown in clinically relevant serum-free medium and exposed to either headspace oxygen concentrations of 18.4% O2 (normoxic) or 3% O2 (physioxic). EVs were isolated from MSC cultures by differential ultracentrifugation and characterized by their size, concentration of EV specific markers, and their angiogenic protein content. Their functional angiogenic effects were evaluated in vitro by their induction of cerebral microvascular endothelial cell (CMEC) proliferation, tube formation, and angiogenic and tight junction gene expressions. Results Compared to normoxic conditions, culturing MSCs under physioxic conditions increased their expression of angiogenic genes SDF1 and VEGF, and subsequently elevated VEGF-A content in the EV fraction. MSC-EVs demonstrated an ability to induce CMEC angiogenesis by promoting tube formation, with the EV fraction from physioxic cultures having the greatest effect. The physioxic EV fraction further upregulated the expression of CMEC angiogenic genes FGF2, HIF1, VEGF and TGFB1, as well as genes (OCLN and TJP1) involved in BBB maintenance. Conclusions EVs from physioxic MSC cultures hold promise in the generation of a cell-free therapy to induce angiogenesis. Their positive angiogenic effect on cerebral microvascular endothelial cells demonstrates that they may have utility in treating ischemic cerebral conditions, where the induction of angiogenesis is critical to improving recovery and neurological function

    Production of Adult Human Synovial Fluid-Derived Mesenchymal Stem Cells in Stirred-Suspension Culture

    No full text
    The chondrogenic potential of synovial fluid-derived mesenchymal stem cells (SF-MSCs) supports their use in cartilage regeneration strategies. However, their paucity in synovial fluid necessitates their proliferation in culture to generate clinically relevant quantities. Here it was determined that 125 mL stirred suspension bioreactors utilizing Cytodex-3 microcarrier beads represent a viable platform for the proliferation of these cells. During the inoculation phase, a bead loading of 2 g/L, an inoculation ratio of 4.5 cells/bead, and continuous agitation at 40 rpm in a medium with 5% serum resulted in high cell attachment efficiencies and a subsequent overall cell fold expansion of 5.7 over 8 days. During the subsequent growth phase, periodic addition of new microcarriers and fresh medium increased culture longevity, resulting in a 21.3 cell fold increase over 18 days in the same vessel without compromising the defining characteristics of the cells. Compared to static tissue culture flasks, a bioreactor-based bioprocess requires fewer handling steps, is more readily scalable, and for the same cell production level, has a lower operating cost as it uses approximately half the medium. Therefore, stirred suspension bioreactors incorporating microcarrier technology represent a viable and more efficient platform than tissue culture flasks for the generation of SF-MSCs in culture

    Critical considerations in determining the surface charge of small extracellular vesicles

    No full text
    Abstract Small extracellular vesicles (EVs) have emerged as a focal point of EV research due to their significant role in a wide range of physiological and pathological processes within living systems. However, uncertainties about the nature of these vesicles have added considerable complexity to the already difficult task of developing EV‐based diagnostics and therapeutics. Whereas small EVs have been shown to be negatively charged, their surface charge has not yet been properly quantified. This gap in knowledge has made it challenging to fully understand the nature of these particles and the way they interact with one another, and with other biological structures like cells. Most published studies have evaluated EV charge by focusing on zeta potential calculated using classical theoretical approaches. However, these approaches tend to underestimate zeta potential at the nanoscale. Moreover, zeta potential alone cannot provide a complete picture of the electrical properties of small EVs since it ignores the effect of ions that bind tightly to the surface of these particles. The absence of validated methods to accurately estimate the actual surface charge (electrical valence) and determine the zeta potential of EVs is a significant knowledge gap, as it limits the development of effective label‐free methods for EV isolation and detection. In this study, for the first time, we show how the electrical charge of small EVs can be more accurately determined by accounting for the impact of tightly bound ions. This was accomplished by measuring the electrophoretic mobility of EVs, and then analytically correlating the measured values to their charge in the form of zeta potential and electrical valence. In contrast to the currently used theoretical expressions, the employed analytical method in this study enabled a more accurate estimation of EV surface charge, which will facilitate the development of EV‐based diagnostic and therapeutic applications

    Biodegradation of Polymers Used in Oil and Gas Operations: Towards Enzyme Biotechnology Development and Field Application

    No full text
    Linear and crosslinked polymers are commonly used in the oil and gas industry. Guar-derived polymers have been extensively utilized in hydraulic fracturing processes, and recently polyacrylamide and cellulose-based polymers have also found utility. As these polymers are used during various phases of the hydraulic fracturing process, they can accumulate at formation fracture faces, resulting in undesired filter cakes that impede oil and gas recovery. Although acids and chemical oxidizers are often added in the fracturing fluids to degrade or ‘break’ polymer filter cakes, the constant use of these chemicals can be hazardous and can result in formation damage and corrosion of infrastructure. Alternately, the use of enzymes is an attractive and environmentally friendly technology that can be used to treat polymer accumulations. While guar-linkage-specific enzyme breakers isolated from bacteria have been shown to successfully cleave guar-based polymers and decrease their molecular weight and viscosity at reservoir conditions, new enzymes that target a broader range of polymers currently used in hydraulic fracturing operations still require research and development for effective application. This review article describes the current state-of-knowledge on the mechanisms and enzymes involved in biodegradation of guar gum, polyacrylamide (and hydrolyzed polyacrylamide), and carboxymethyl cellulose polymers. In addition, advantages and challenges in the development and application of enzyme breaker technologies are discussed

    Real time monitoring of biofilm development under flow conditions in porous media

    No full text
    <div><p>Biofilm growth can impact the effectiveness of industrial processes that involve porous media. To better understand and characterize how biofilms develop and affect hydraulic properties in porous media, both spatial and temporal development of biofilms under flow conditions was investigated in a translucent porous medium by using <i>Pseudomonas fluorescens</i> HK44, a bacterial strain genetically engineered to luminesce in the presence of an induction agent. Real-time visualization of luminescent biofilm growth patterns under constant pressure conditions was captured using a CCD camera. Images obtained over 8 days revealed that variations in bioluminescence intensity could be correlated to biofilm cell density and hydraulic conductivity. These results were used to develop a real-time imaging method to study the dynamic behavior of biofilm evolution in a porous medium, thereby providing a new tool to investigate the impact of biological fouling in porous media under flow conditions.</p> </div

    Bioprocessing of Mesenchymal Stem Cells and Their Derivatives: Toward Cell-Free Therapeutics

    No full text
    Mesenchymal stem cells (MSCs) have attracted tremendous research interest due to their ability to repair tissues and reduce inflammation when implanted into a damaged or diseased site. These therapeutic effects have been largely attributed to the collection of biomolecules they secrete (i.e., their secretome). Recent studies have provided evidence that similar effects may be produced by utilizing only the secretome fraction containing extracellular vesicles (EVs). EVs are cell-derived, membrane-bound vesicles that contain various biomolecules. Due to their small size and relative mobility, they provide a stable mechanism to deliver biomolecules (i.e., biological signals) throughout an organism. The use of the MSC secretome, or its components, has advantages over the implantation of the MSCs themselves: (i) signals can be bioengineered and scaled to specific dosages, and (ii) the nonliving nature of the secretome enables it to be efficiently stored and transported. However, since the composition and therapeutic benefit of the secretome can be influenced by cell source, culture conditions, isolation methods, and storage conditions, there is a need for standardization of bioprocessing parameters. This review focuses on key parameters within the MSC culture environment that affect the nature and functionality of the secretome. This information is pertinent to the development of bioprocesses aimed at scaling up the production of secretome-derived products for their use as therapeutics

    Understanding the visible-light-initiated manganese-catalyzed synthesis of quinolines and naphthyridines under ambient and aerobic conditions

    No full text
    Polyaromatic N-heterocycles are some of the most common building blocks in natural products and active pharmaceutical ingredients. Significant efforts have been devoted to developing catalytic protocols, including those which use an acceptorless dehydrogenation strategy at elevated temperatures, to produce polyaromatic N-heterocycles like quinolines and naphthyridines. However, photoinitiated catalysis driven by visible light offers a milder and often more selective protocol as an alternative to thermal reactions. Here, we present the catalytic syntheses of quinolines and naphthyridines from ortho-aminobenzyl alcohols and ketones using the photocatalyst [Mn(L1H)(CO)3Br] (L1H = 7-hydroxy-2-methyl-1,8-naphthyridine-N-oxide), bearing a phenolic unit on a 1,8-naphthyridine-N-oxide scaffold, under ambient and aerobic conditions with visible light illumination. We describe a broad, functional group-tolerant substrate scope of >30 examples under modest reaction conditions. A variety of 2-aminobenzyl alcohols containing electron-donating and electron-deficient groups and (2-aminopyridin-3-yl)methanol are converted to the corresponding quinolines and naphthyridines using ambient air as an oxidant in the presence of KOH. We synthesized a wide range of derivatives, including some of the bioactive antimalarial drug chloroquine and the steroids progesterone and pregnenolone to highlight the value-added applications of this catalytic protocol for pharmaceutical ingredient and natural product syntheses. We performed substrate viability, ultraviolet-visible, electron paramagnetic resonance, and X-ray photoelectron spectroscopy studies, as well as density functional theory calculations to gain mechanistic insights to the reaction pathway. The catalytic cycle involves condensation of the amino group in the ortho-aminobenzyl alcohol with the ketone initially, which is followed by aerobic oxidation of the benzyl alcohol to the corresponding benzaldehyde catalyzed by the photoinitiator [Mn(L1H)(CO)3Br] in the presence of visible light, and finally, a KOH-promoted condensation and cyclization to afford quinolines as the final products.Agency for Science, Technology and Research (A*STAR)Ministry of Education (MOE)Nanyang Technological UniversitySubmitted/Accepted versionH.S.S. acknowledges that this project is supported by A*STAR under the AME IRG grant no. A2083c0050. H.S.S. is also grateful for the Singapore Ministry of Education Academic Research Fund Tier 1 grants RT 05/19 and RG 09/22 and the NTU 5th ACE Grant Call. Financial support from the Science and Engineering Research Board (SERB), India, is gratefully acknowledged. J.K.B. thanks SERB, India, for a J. C. Bose fellowship. K.P. thanks NTU, Singapore, and the International Internship Program (IIP) for a fellowship. A.B. thanks IIT Kanpur for fellowship
    corecore