3 research outputs found

    VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission

    No full text
    The visible infrared thermal imaging spectrometer (VIRTIS) is one of the principal payloads to be launched in 2003 on ESA's Rosetta spacecraft. Its primary scientific objective s are to map the surface of the comet Wirtanen, monitor its temperature, and identify the solids and gaseous species on the nucleus and in the coma. VIRTIS will also collect data on two asteroids, one of which has been identified as Mimistrobell. The data is collected remotely using a mapping spectrometer co-boresighted with a high spectral resolution spectrometer. The mapper consists of a Shafer telescope matched to an Offner grating spectrometer capable of gathering high spatial, medium spectral resolution image cubes in the 0.25 to 5 micrometers waveband. The high spectral resolution spectrometer uses an echelle grating and a cross dispersing prism to achieve resolving powers of 1200 to 300 in the 1.9 to 5 micrometers band. Both sub-systems are passively cooled to 130 K and use two Sterling cycle coolers to enable two HgCdTe detector arrays to operate at 70 K. The mapper also uses a silicon back-side illuminated detector array to cover the ultra-violet to near-infrared optical band

    South-polar features on Venus similar to those near the north pole

    No full text
    Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright 'dipole' feature surrounded by a cold 'collar' at its north pole (1–4). The polar dipole is a 'double-eye' feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus' south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition
    corecore