125 research outputs found

    Catalytic activity of Pt_(38) in the oxygen reduction reaction from first-principles simulations

    Get PDF
    The activity of truncated octahedral Pt_(38) clusters as a catalyst in the oxygen reduction reaction (ORR) is investigated via first-principles simulations. Three catalytic steps: O_2 dissociation (O_(2ads) → 2_O_(ads)), O hydration (O_(ads) + H_2O_(ads) → 2OH_(ads)), and H_2O formation (OH_(ads) + H_(ads) → H_2O_(ads)) are considered, in which all reactant species are co-adsorbed on the Pt_(38) cluster according to a Langmuir–Hinshelwood mechanism. The minimum structures and saddle points for these different steps are then calculated at the density-functional theory (DFT) level using a gradient-corrected exchange–correlation (xc-)functional and taking into account the effect of the solvent via a self-consistent continuum solvation model. Moreover, first-principles molecular dynamics (AIMD) simulations in which the H_2O solvent is explicitly described are performed to explore dynamic phenomena such as fast hydrogen transfer via meta-stable hydronium-type configurations and their possible role in ORR reaction paths. By comparing the present findings with previous results on the Pt(111) surface, it is shown that in such a nanometer-size cluster the rate-determining-step (rds) corresponds to H_2O formation, at variance with the extended surface in which O hydration was rate-determining, and that the overall reaction barrier is actually increased with respect to the extended system. This is in agreement with and rationalizes experimental results showing a decrease of ORR catalytic activity in the nanometer-size cluster range

    Theoretical Analysis of a 2D Metallic/Semiconducting Transition-Metal Dichalcogenide NbS2//WSe2 Hybrid Interface

    Get PDF
    A first-principles theoretical study of a monolayer-thick lateral heterostructure (LH) joining two different transition metal dichalcogenides, NbS2 and WSe2, is reported. The NbS2//WSe2 LH can be considered a prototypical example of a metal (NbS2)/semiconductor (WSe2) 2D hybrid heterojunction. First, realistic atomistic models of the NbS2//WSe2 LH are generated and validated, its band structure is derived, and it is subjected to a fragment decomposition and electrostatic potential analysis to extract a simple but quantitative model of this interfacial system. Stoichiometric fluctuations models are also investigated and found not to alter the qualitative picture. Then, electron transport simulations are conducted and they are analyzed via band alignment analysis. It is concluded that the NbS2//WSe2 LH appears as a robust seamless in-plane 2D modular junction for potential use in optoelectronic devices going beyond the present miniaturization technology

    CFD-based methodology for the characterization of the combustion process of a passive pre-chamber gasoline engine

    Get PDF
    Pre-chamber (PC) ignition systems, enabling Turbulent Jet Ignition (TJI) combustion, represent a promising technology to extend the lean limit of Spark Ignition Internal Combustion Engines. Indeed, the higher ignition energy provided by the turbulent jets contributes to the limitation of combustion duration and variability even in diluted conditions. However, a detailed analysis of the combustion process is needed to maximize the performance of the system. More specifically, the interaction between the chemical and the turbulent scales are key factors in assessing the probabilities of main chamber (MC) ignition, determining the ignition pattern, and characterizing the combustion process. For this reason, the development of reliable numerical models is a crucial factor to pave the way toward a deeper understanding of details concerning TJI combustion. In the present work, a 3D-CFD numerical model was validated against experimental data at 4000 rpm, in stoichiometric and lean (i.e., λ = 1.2) conditions in a single-cylinder gasoline engine equipped with a passive pre-chamber. In both operations, the evolution of the turbulent combustion regimes over the whole combustion process was investigated, highlighting analogies and differences between the selected operative conditions. Additionally, a methodology to characterize the MC ignition and combustion process, able to describe the different phases of the interaction between PC and MC, and assess the thermal, turbulent, and chemical effects of the turbulent jets is presented

    Peptide-Based Supramolecular Systems Chemistry

    Full text link
    Peptide-based supramolecular systems chemistry seeks to mimic the ability of life forms to use conserved sets of building blocks and chemical reactions to achieve a bewildering array of functions. Building on the design principles for short peptide-based nanomaterials with properties, such as self-assembly, recognition, catalysis, and actuation, are increasingly available. Peptide-based supramolecular systems chemistry is starting to address the far greater challenge of systems-level design to access complex functions that emerge when multiple reactions and interactions are coordinated and integrated. We discuss key features relevant to systems-level design, including regulating supramolecular order and disorder, development of active and adaptive systems by considering kinetic and thermodynamic design aspects and combinatorial dynamic covalent and noncovalent interactions. Finally, we discuss how structural and dynamic design concepts, including preorganization and induced fit, are critical to the ability to develop adaptive materials with adaptive and tunable photonic, electronic, and catalytic properties. Finally, we highlight examples where multiple features are combined, resulting in chemical systems and materials that display adaptive properties that cannot be achieved without this level of integration

    The atomistic origin of the extraordinary oxygen reduction activity of Pt_3Ni_7 fuel cell catalysts

    Get PDF
    Recently Debe et al. reported that Pt_3Ni_7 leads to extraordinary Oxygen Reduction Reaction (ORR) activity. However, several reports show that hardly any Ni remains in the layers of the catalysts close to the surface (“Pt-skin effect”). This paradox that Ni is essential to the high catalytic activity with the peak ORR activity at Pt_3Ni_7 while little or no Ni remains close to the surface is explained here using large-scale first-principles-based simulations. We make the radical assumption that processing Pt–Ni catalysts under ORR conditions would leach out all Ni accessible to the solvent. To simulate this process we use the ReaxFF reactive force field, starting with random alloy particles ranging from 50% Ni to 90% Ni and containing up to ~300 000 atoms, deleting the Ni atoms, and equilibrating the resulting structures. We find that the Pt_3Ni_7 case and a final particle radius around 7.5 nm lead to internal voids in communication with the exterior, doubling the external surface footprint, in fair agreement with experiment. Then we examine the surface character of these nanoporous systems and find that a prominent feature in the surface of the de-alloyed particles is a rhombic structure involving 4 surface atoms which is crystalline-like but under-coordinated. Using density-functional theory, we calculate the energy barriers of ORR steps on Pt nanoporous catalysts, focusing on the O_(ad)-hydration reaction (O_(ad) + H_2O_(ad) → OH_(ad) + OH_(ad)) but including the barriers of O_2 dissociation (O_(2ad) → O_(ad) + O_(ad)) and water formation (OH_(ad) + H_(ad) → H_2O_(ad)). We find that the reaction barrier for the O_(ad)-hydration rate-determining-step is reduced significantly on the de-alloyed surface sites compared to Pt(111). Moreover we find that these active sites are prevalent on the surface of particles de-alloyed from a Pt–Ni 30 : 70 initial composition. These simulations explain the peak in surface reactivity at Pt_3Ni_7, and provide a rational guide to use for further optimization of improved catalytic and nanoporous materials

    Dramatic Increase in the Oxygen Reduction Reaction for Platinum Cathodes from Tuning the Solvent Dielectric Constant

    Get PDF
    Hydrogen fuel cells (FC) are considered essential for a sustainable economy based on carbon-free energy sources, but a major impediment are the costs. First-principles quantum mechanics (density functional theory including solvation) is used to predict how the energies and barriers for the mechanistic steps of the oxygen reduction reaction (ORR) over the fcc(111) platinum surface depend on the dielectric constant of the solvent. The ORR kinetics can be strongly accelerated by decreasing the effective medium polarizability from the high value it has in water. Possible ways to realize this experimentally are suggested. The calculated volcano structure for the dependence of rate on solvent polarization is considered to be general, and should be observed in other electrochemical systems

    Discovering indium as hydrogen production booster for a Cu/SiO2 catalyst in steam reforming of methanol

    Get PDF
    We report on the use of In as an effective H2 production promoter in a Cu/SiO2 catalyst for the steam reforming of methanol. To date, In promotion has been limited to noble metals because of its tendency to “bury” other metals thus compromising the catalytic activity. Here, we prepared a silica-supported Cu-In catalyst via a urea-assisted co-precipitation method that showed a higher H2 productivity compared to the monometallic catalyst and a remarkable H2/CO2 molar ratio of almost 3 at 220 °C. Through XPS, XRPD and HRTEM-EDX along with H2- and CO-TPR, H2O-TPD, and N2O titrations, supported by computational modeling, we attributed such superior performances to an easier H2O activation due to improved electronic properties of the Cu phase, that is, its lower oxidation state via electron density transfer from the InOx buffer phase as a 1D “necklace” structures crucially mediating the interaction of small Cu nanoparticles (2.6 nm) and silica

    Catalytic activity of Pt_(38) in the oxygen reduction reaction from first-principles simulations

    Get PDF
    The activity of truncated octahedral Pt_(38) clusters as a catalyst in the oxygen reduction reaction (ORR) is investigated via first-principles simulations. Three catalytic steps: O_2 dissociation (O_(2ads) → 2_O_(ads)), O hydration (O_(ads) + H_2O_(ads) → 2OH_(ads)), and H_2O formation (OH_(ads) + H_(ads) → H_2O_(ads)) are considered, in which all reactant species are co-adsorbed on the Pt_(38) cluster according to a Langmuir–Hinshelwood mechanism. The minimum structures and saddle points for these different steps are then calculated at the density-functional theory (DFT) level using a gradient-corrected exchange–correlation (xc-)functional and taking into account the effect of the solvent via a self-consistent continuum solvation model. Moreover, first-principles molecular dynamics (AIMD) simulations in which the H_2O solvent is explicitly described are performed to explore dynamic phenomena such as fast hydrogen transfer via meta-stable hydronium-type configurations and their possible role in ORR reaction paths. By comparing the present findings with previous results on the Pt(111) surface, it is shown that in such a nanometer-size cluster the rate-determining-step (rds) corresponds to H_2O formation, at variance with the extended surface in which O hydration was rate-determining, and that the overall reaction barrier is actually increased with respect to the extended system. This is in agreement with and rationalizes experimental results showing a decrease of ORR catalytic activity in the nanometer-size cluster range

    Optimizing the oxygen evolution reaction for electrochemical water oxidation by tuning solvent properties

    Get PDF
    Electrochemical water-based energy cycles provide a most promising alternative to fossil-fuel sources of energy. However, current electrocatalysts are not adequate (high overpotential, lack of selectivity toward O_2 production, catalyst degradation). We propose here mechanistic guidelines for experimental examination of modified catalysts based on the dependence of kinetic rates on the solvent dielectric constant. To illustrate the procedure we consider the fcc(111) platinum surface and show that the individual steps for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) change systematically with the polarizability of the medium. Thus changing this environmental variable can be used to tune the rate determining steps and the barriers, providing a means for screening and validating new systems to optimize the rate determining steps for the ORR and OER reaction pathways
    • …
    corecore