7,080 research outputs found

    Nonclassicality of noisy quantum states

    Full text link
    Nonclassicality conditions for an oscillator-like system interacting with a hot thermal bath are considered. Nonclassical properties of quantum states can be conserved up to a certain temperature threshold only. In this case, affection of the thermal noise can be compensated via transformation of an observable, which tests the nonclassicality (witness function). Possibilities for experimental implementations based on unbalanced homodyning are discussed. At the same time, we demonstrate that the scheme based on balanced homodyning cannot be improved for noisy states with proposed technique and should be applied directly.Comment: 15 pages, 3 figure

    Some exact properties of the gluon propagator

    Full text link
    Recent numerical studies of the gluon propagator in the minimal Landau and Coulomb gauges in space-time dimension 2, 3, and 4 pose a challenge to the Gribov confinement scenario. We prove, without approximation, that for these gauges, the continuum gluon propagator D(k)D(k) in SU(N) gauge theory satisfies the bound d1d1(2π)dddkD(k)k2N{d-1 \over d} {1 \over (2 \pi)^d} \int d^dk {D(k) \over k^2} \leq N. This holds for Landau gauge, in which case dd is the dimension of space-time, and for Coulomb gauge, in which case dd is the dimension of ordinary space and D(k)D(k) is the instantaneous spatial gluon propagator. This bound implies that limk0kd2D(k)=0\lim_{k \to 0}k^{d-2} D(k) = 0, where D(k)D(k) is the gluon propagator at momentum kk, and consequently D(0)=0D(0) = 0 in Landau gauge in space-time d=2d = 2, and in Coulomb gauge in space dimension d=2d = 2, but D(0) may be finite in higher dimension. These results are compatible with numerical studies of the Landau-and Coulomb-gauge propagator. In 4-dimensional space-time a regularization is required, and we also prove an analogous bound on the lattice gluon propagator, 1d(2π)dππddkμcos2(kμ/2)Dμμ(k)4λsin2(kλ/2)N{1 \over d (2 \pi)^d} \int_{- \pi}^{\pi} d^dk {\sum_\mu \cos^2(k_\mu/2) D_{\mu \mu}(k) \over 4 \sum_\lambda \sin^2(k_\lambda/2)} \leq N. Here we have taken the infinite-volume limit of lattice gauge theory at fixed lattice spacing, and the lattice momentum componant kμk_\mu is a continuous angle πkμπ- \pi \leq k_\mu \leq \pi. Unexpectedly, this implies a bound on the {\it high-momentum} behavior of the continuum propagator in minimum Landau and Coulomb gauge in 4 space-time dimensions which, moreover, is compatible with the perturbative renormalization group when the theory is asymptotically free.Comment: 13 page
    corecore