6,049 research outputs found
Capacitively-coupled rf discharge with a large amount of microparticles: spatiotemporal emission pattern and microparticle arrangement
The effect of micron-sized particles on a low-pressure capacitively-coupled
rf discharge is studied both experimentally and using numerical simulations. In
the laboratory experiments, microparticle clouds occupying a considerable
fraction of the discharge volume are supported against gravity with the help of
the thermophoretic force. The spatiotemporally resolved optical emission
measurements are performed with different arrangements of microparticles. The
numerical simulations are carried out on the basis of a one-dimensional hybrid
(fluid-kinetic) discharge model describing the interaction between plasma and
microparticles in a self-consistent way. The study is focused on the role of
microparticle arrangement in interpreting the spatiotemporal emission
measurements. We show that it is not possible to reproduce simultaneously the
observed microparticle arrangement and emission pattern in the framework of the
considered one-dimensional model. This disagreement is discussed and attributed
to two-dimensional effects, e.g., radial diffusion of the plasma components
Electron spin relaxation in carbon nanotubes
The long standing problem of inexplicably short spin relaxation in carbon
nanotubes (CNTs) is examined. The curvature-mediated spin-orbital interaction
is shown to induce fluctuating electron spin precession causing efficient
relaxation in a manner analogous to the Dyakonov-Perel mechanism. Our
calculation estimates longitudinal (spin-flip) and transversal (decoherence)
relaxation times as short as 150 ps and 110 ps at room temperature,
respectively, along with a pronounced anisotropic dependence. Interference of
electrons originating from different valleys can lead to even faster dephasing.
The results can help clarify the measured data, resolving discrepancies in the
literature.Comment: 9 pages, 3 figure
Search for solar axions produced by Compton process and bremsstrahlung using the resonant absorption and axioelectric effect
The search for resonant absorption of Compton and bremsstrahlung solar axions
by Tm nuclei have been performed. Such an absorption should lead to the
excitation of low-lying nuclear energy level: Tm Tm Tm (8.41 keV). Additionally the
axio-electric effect in silicon atoms is sought. The axions are detected using
a Si(Li) detectors placed in a low-background setup. As a result, a new model
independent restrictions on the axion-electron and the axion-nucleon coupling:
and the axion-electron
coupling constant: has been obtained. The
limits leads to the bounds 7.9 eV and 1.3 keV for the
mass of the axion in the DFSZ and KSVZ models, respectively ( C.L.).Comment: 6 pages, 3 figures, contributed to the 9th Patras Workshop on Axions,
WIMPs and WISPs, Mainz, June 24-28, 201
Pioneer settlement of the cold-water coral Desmophyllum dianthus (Esper, 1794) on plastic
Larval settlement is a critical step for sessile benthic species such as corals, whose ability to thrive on diverse natural and anthropogenic substrates may lead to a competitive advantage in the colonization of new environments with respect to a narrow tolerance for a specific kind of substratum. Plastic debris, widespread in marine waters, provides a large, motile, and solid substratum supporting a highly diverse biological community. Here we present the first observation of a floating plastic bottle colonized by the deep-sea coral Desmophyllum dianthus. The density pattern and co-occurring species composition suggest a pioneer behavior of this coral species, whose peculiar morphologic plasticity response when interacting with the plastic substrate (i.e., low density polyethylene) has not been observed before. The tolerance of D. dianthus for such plastic substrate may affect ecological processes in deep water environments, disrupting interspecific substrate competition in the benthic community
- …