6,202 research outputs found

    A rotating disk around the very young massive star AFGL 490

    Full text link
    We observed the embedded, young 8--10 Msun star AFGL 490 at subarcsecond resolution with the Plateau de Bure Interferometer in the C17O (2--1) transition and found convincing evidence that AFGL 490 is surrounded by a rotating disk. Using two-dimensional modeling of the physical and chemical disk structure coupled to line radiative transfer, we constrain its basic parameters. We obtain a relatively high disk mass of 1 Msun and a radius of ~ 1500 AU. A plausible explanation for the apparent asymmetry of the disk morphology is given.Comment: 4 pages, 5 figure

    Phonon-mediated electron spin phase diffusion in a quantum dot

    Full text link
    An effective spin relaxation mechanism that leads to electron spin decoherence in a quantum dot is proposed. In contrast to the common calculations of spin-flip transitions between the Kramers doublets, we take into account a process of phonon-mediated fluctuation in the electron spin precession and subsequent spin phase diffusion. Specifically, we consider modulations in the longitudinal g-factor and hyperfine interaction induced by the phonon-assisted transitions between the lowest electronic states. Prominent differences in the temperature and magnetic field dependence between the proposed mechanisms and the spin-flip transitions are expected to facilitate its experimental verification. Numerical estimation demonstrates highly efficient spin relaxation in typical semiconductor quantum dots.Comment: 5 pages, 1 figur

    Unusual magnetoresistance in a topological insulator with a single ferromagnetic barrier

    Full text link
    Tunneling surface current through a thin ferromagnetic barrier in a three-dimensional topological insulator is shown to possess an extraordinary response to the orientation of barrier magnetization. In contrast to conventional magnetoresistance devices that are sensitive to the relative alignment of two magnetic layers, a drastic change in the transmission current is achieved by a single layer when its magnetization rotates by 90 degrees. Numerical estimations predict a giant magnetoresistance as large as 800 % at room temperature and the proximate exchange interaction of 40 meV in the barrier. When coupled with electrical control of magnetization direction, this phenomenon may be used to enhance the gating function with potentially sharp turn-on/off for low power applications

    Thermal budget of superconducting digital circuits at sub-kelvin temperatures

    Get PDF
    Superconducting single-flux-quantum (SFQ) circuits have so far been developed and optimized for operation at or above helium temperatures. The SFQ approach, however, should also provide potentially viable and scalable control and read-out circuits for Josephson-junction qubits and other applications with much lower, milli-kelvin, operating temperatures. This paper analyzes the overheating problem which becomes important in this new temperature range. We suggest a thermal model of the SFQ circuits at sub-kelvin temperatures and present experimental results on overheating of electrons and silicon substrate which support this model. The model establishes quantitative limitations on the dissipated power both for "local" electron overheating in resistors and "global" overheating due to ballistic phonon propagation along the substrate. Possible changes in the thermal design of SFQ circuits in view of the overheating problem are also discussed.Comment: 10 pages, 8 figures, submitted to J. Appl. Phy

    First Time-dependent Study of H2 and H3+ Ortho-Para Chemistry in the Diffuse Interstellar Medium: Observations Meet Theoretical Predictions

    Full text link
    The chemistry in the diffuse interstellar medium initiates the gradual increase of molecular complexity during the life cycle of matter. A key molecule that enables build-up of new molecular bonds and new molecules via proton-donation is H3+. Its evolution is tightly related to molecular hydrogen and thought to be well understood. However, recent observations of ortho and para lines of H2 and H3+ in the diffuse ISM showed a puzzling discrepancy in nuclear spin excitation temperatures and populations between these two key species. H3+, unlike H2, seems to be out of thermal equilibrium, contrary to the predictions of modern astrochemical models. We conduct the first time-dependent modeling of the para-fractions of H2 and H3+ in the diffuse ISM and compare our results to a set of line-of-sight observations, including new measurements presented in this study. We isolate a set of key reactions for H3+ and find that the destruction of the lowest rotational states of H3+ by dissociative recombination largely control its ortho/para ratio. A plausible agreement with observations cannot be achieved unless a ratio larger than 1:5 for the destruction of (1,1)- and (1,0)-states of H3+ is assumed. Additionally, an increased CR ionization rate to 10(-15) 1/s further improves the fit whereas variations of other individual physical parameters, such as density and chemical age, have only a minor effect on the predicted ortho/para ratios. Thus our study calls for new laboratory measurements of the dissociative recombination rate and branching ratio of the key ion H3+ under interstellar conditions.Comment: 27 pages, 6 figures, 3 table

    Free-space quantum links under diverse weather conditions

    Full text link
    Free-space optical communication links are promising channels for establishing secure quantum communication. Here we study the transmission of nonclassical light through a turbulent atmospheric link under diverse weather conditions, including rain or haze. To include these effects, the theory of light transmission through atmospheric links in the elliptic-beam approximation presented by Vasylyev et al. [D. Vasylyev et al., Phys. Rev. Lett. 117, 090501 (2016); arXiv:1604.01373] is further generalized.It is demonstrated, with good agreement between theory and experiment, that low-intensity rain merely contributes additional deterministic losses, whereas haze also introduces additional beam deformations of the transmitted light. Based on these results, we study theoretically the transmission of quadrature squeezing and Gaussian entanglement under these weather conditions.Comment: 14 pages, 8 figure
    corecore