7,389 research outputs found

    Conductivity and permittivity of dispersed systems with penetrable particle-host interphase

    Full text link
    A model for the study of the effective quasistatic conductivity and permittivity of dispersed systems with particle-host interphase, within which many-particle polarization and correlation contributions are effectively incorporated, is presented. The structure of the system's components, including the interphase, is taken into account through modelling their low-frequency complex permittivity profiles. The model describes, among other things, a percolation-type behavior of the effective conductivity, accompanied by a considerable increase in the real part of the effective complex permittivity. The percolation threshold location is determined mainly by the thickness of the interphase. The "double" percolation effect is predicted. The results are contrasted with experiment.Comment: 10 pages, 10 figure

    Probability of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips

    Full text link
    We have studied supercurrent-assisted formation of the resistive state in nano-structured Nb and NbN superconducting films after absorption of a single photon. In amorphous narrow NbN strips the probability of the resistive state formation has a pronounced spectral cut-off. The corresponding threshold photon energy decreases with the bias current. Analysis of the experimental data in the framework of the generalized hot-spot model suggests that the quantum yield for near-infrared photons increases faster than the photon nergy. Relaxation of the resistive state depends on the photon energy making the phenomenon feasible for the development of energy resolving single-photon detectors.Comment: 9 pages, 9 figures, submitted to Eur. Phys. Journa

    A rotating disk around the very young massive star AFGL 490

    Full text link
    We observed the embedded, young 8--10 Msun star AFGL 490 at subarcsecond resolution with the Plateau de Bure Interferometer in the C17O (2--1) transition and found convincing evidence that AFGL 490 is surrounded by a rotating disk. Using two-dimensional modeling of the physical and chemical disk structure coupled to line radiative transfer, we constrain its basic parameters. We obtain a relatively high disk mass of 1 Msun and a radius of ~ 1500 AU. A plausible explanation for the apparent asymmetry of the disk morphology is given.Comment: 4 pages, 5 figure
    corecore