7,262 research outputs found

    Embeddings of rearrangement invariant spaces that are not strictly singular

    Full text link
    We give partial answers to the following conjecture: the natural embedding of a rearrangement invariant space E into L_1([0,1]) is strictly singular if and only if G does not embed into E continuously, where G is the closure of the simple functions in the Orlicz space L_Phi with Phi(x) = exp(x^2)-1.Comment: Also available at http://www.math.missouri.edu/~stephen/preprint

    Capacitively-coupled rf discharge with a large amount of microparticles: spatiotemporal emission pattern and microparticle arrangement

    Get PDF
    The effect of micron-sized particles on a low-pressure capacitively-coupled rf discharge is studied both experimentally and using numerical simulations. In the laboratory experiments, microparticle clouds occupying a considerable fraction of the discharge volume are supported against gravity with the help of the thermophoretic force. The spatiotemporally resolved optical emission measurements are performed with different arrangements of microparticles. The numerical simulations are carried out on the basis of a one-dimensional hybrid (fluid-kinetic) discharge model describing the interaction between plasma and microparticles in a self-consistent way. The study is focused on the role of microparticle arrangement in interpreting the spatiotemporal emission measurements. We show that it is not possible to reproduce simultaneously the observed microparticle arrangement and emission pattern in the framework of the considered one-dimensional model. This disagreement is discussed and attributed to two-dimensional effects, e.g., radial diffusion of the plasma components

    Weak ferromagnetism of antiferromagnetic domains in graphene with defects

    Full text link
    Magnetic properties of graphene with randomly distributed magnetic defects/vacancies are studied in terms of the Kondo Hamiltonian in the mean field approximation. It has been shown that graphene with defects undergoes a magnetic phase transition from a paramagnetic to a antiferromagnetic (AFM) phase once the temperature reaches the critical point TNT_{N}. The defect straggling is taken into account as an assignable cause of multiple nucleation into AFM domains. Since each domain is characterized by partial compensating magnetization of the defects associated with different sublattices, together they reveal a super-paramagnetic behavior in a magnetic field. Theory qualitatively describe the experimental data provided the temperature dependence of the AFM domain structure.Comment: 8 pages, 2 figure

    Mixed Quantum/Classical Approach for Description of Molecular Collisions in Astrophysical Environments

    Get PDF
    An efficient and accurate mixed quantum/classical theory approach for computational treatment of inelastic scattering is extended to describe collision of an atom with a general asymmetric-top rotor polyatomic molecule. Quantum mechanics, employed to describe transitions between the internal states of the molecule, and classical mechanics, employed for description of scattering of the atom, are used in a self-consistent manner. Such calculations for rotational excitation of HCOOCH3 in collisions with He produce accurate results at scattering energies above 15 cm–1, although resonances near threshold, below 5 cm–1, cannot be reproduced. Importantly, the method remains computationally affordable at high scattering energies (here up to 1000 cm–1), which enables calculations for larger molecules and at higher collision energies than was possible previously with the standard full-quantum approach. Theoretical prediction of inelastic cross sections for a number of complex organic molecules observed in space becomes feasible using this new computational tool

    A DC Programming Approach for Solving Multicast Network Design Problems via the Nesterov Smoothing Technique

    Get PDF
    This paper continues our effort initiated in [9] to study Multicast Communication Networks, modeled as bilevel hierarchical clustering problems, by using mathematical optimization techniques. Given a finite number of nodes, we consider two different models of multicast networks by identifying a certain number of nodes as cluster centers, and at the same time, locating a particular node that serves as a total center so as to minimize the total transportation cost through the network. The fact that the cluster centers and the total center have to be among the given nodes makes this problem a discrete optimization problem. Our approach is to reformulate the discrete problem as a continuous one and to apply Nesterov smoothing approximation technique on the Minkowski gauges that are used as distance measures. This approach enables us to propose two implementable DCA-based algorithms for solving the problems. Numerical results and practical applications are provided to illustrate our approach

    Classification of All Poisson-Lie Structures on an Infinite-Dimensional Jet Group

    Full text link
    A local classification of all Poisson-Lie structures on an infinite-dimensional group G∞G_{\infty} of formal power series is given. All Lie bialgebra structures on the Lie algebra {\Cal G}_{\infty} of G∞G_{\infty} are also classified.Comment: 11 pages, AmSTeX fil

    Equivariant Symplectic Geometry of Gauge Fixing in Yang-Mills Theory

    Get PDF
    The Faddeev-Popov gauge fixing in Yang-Mills theory is interpreted as equivariant localization. It is shown that the Faddeev-Popov procedure amounts to a construction of a symplectic manifold with a Hamiltonian group action. The BRST cohomology is shown to be equivalent to the equivariant cohomology based on this symplectic manifold with Hamiltonian group action. The ghost operator is interpreted as a (pre)symplectic form and the gauge condition as the moment map corresponding to the Hamiltonian group action. This results in the identification of the gauge fixing action as a closed equivariant form, the sum of an equivariant symplectic form and a certain closed equivariant 4-form which ensures convergence. An almost complex structure compatible with the symplectic form is constructed. The equivariant localization principle is used to localize the path integrals onto the gauge slice. The Gribov problem is also discussed in the context of equivariant localization principle. As a simple illustration of the methods developed in the paper, the partition function of N=2 supersymmetric quantum mechanics is calculated by equivariant localizationComment: 46 pages, added remarks, typos and references correcte

    Mixed Quantum/Classical Calculations of Total and Differential Elastic and Rotationally Inelastic Scattering Cross Sections for Light and Heavy Reduced Masses in a Broad Range of Collision Energies

    Get PDF
    The mixed quantum/classical theory (MQCT) for rotationally inelastic scattering developed recently [A. Semenov and D. Babikov, J. Chem. Phys.139, 174108 (2013)] is benchmarked against the full quantum calculations for two molecular systems: He + H2 and Na + N2. This allows testing new method in the cases of light and reasonably heavy reduced masses, for small and large rotational quanta, in a broad range of collision energies and rotational excitations. The resultant collision cross sections vary through ten-orders of magnitude range of values. Both inelastic and elastic channels are considered, as well as differential (over scattering angle) cross sections. In many cases results of the mixed quantum/classical method are hard to distinguish from the full quantum results. In less favorable cases (light masses, larger quanta, and small collision energies) some deviations are observed but, even in the worst cases, they are within 25% or so. The method is computationally cheap and particularly accurate at higher energies, heavier masses, and larger densities of states. At these conditions MQCT represents a useful alternative to the standard full-quantum scattering theory

    Electron spin relaxation in carbon nanotubes

    Full text link
    The long standing problem of inexplicably short spin relaxation in carbon nanotubes (CNTs) is examined. The curvature-mediated spin-orbital interaction is shown to induce fluctuating electron spin precession causing efficient relaxation in a manner analogous to the Dyakonov-Perel mechanism. Our calculation estimates longitudinal (spin-flip) and transversal (decoherence) relaxation times as short as 150 ps and 110 ps at room temperature, respectively, along with a pronounced anisotropic dependence. Interference of electrons originating from different valleys can lead to even faster dephasing. The results can help clarify the measured data, resolving discrepancies in the literature.Comment: 9 pages, 3 figure
    • …
    corecore