37 research outputs found

    Crossing Over from Attractive to Repulsive Interactions in a Tunneling Bosonic Josephson Junction

    Full text link
    We explore the interplay between tunneling and interatomic interactions in the dynamics of a bosonic Josephson junction. We tune the scattering length of an atomic 39^{39}K Bose-Einstein condensate confined in a double-well trap to investigate regimes inaccessible to other superconducting or superfluid systems. In the limit of small-amplitude oscillations, we study the transition from Rabi to plasma oscillations by crossing over from attractive to repulsive interatomic interactions. We observe a critical slowing down in the oscillation frequency by increasing the strength of an attractive interaction up to the point of a quantum phase transition. With sufficiently large initial oscillation amplitude and repulsive interactions the system enters the macroscopic quantum self-trapping regime, where we observe coherent undamped oscillations with a self-sustained average imbalance of the relative well population. The exquisite agreement between theory and experiments enables the observation of a broad range of many body coherent dynamical regimes driven by tunable tunneling energy, interactions and external forces, with applications spanning from atomtronics to quantum metrology.Comment: 10 pages, 8 figures, supplemental materials are include

    Dynamical formation of quantum droplets in a K39 mixture

    Get PDF
    We report on the dynamical formation of self-bound quantum droplets in attractive mixtures of 39^{39}K atoms. Considering the experimental observations of Semeghini et al., Phys. Rev. Lett. 120, 235301 (2018), we perform numerical simulations to understand the relevant processes involved in the formation of a metastable droplet from an out-of-equilibrium mixture. We first analyze the so-called self-evaporation mechanism, where the droplet dissipates energy by releasing atoms, and then we consider the effects of losses due to three-body recombinations and to the balancing of populations in the mixture. We discuss the importance of these three mechanisms in the observed droplet dynamics and their implications for future experiments

    Spatial Bloch oscillations of a quantum gas in a "beat-note" superlattice

    Full text link
    We report the experimental realization of a new kind of optical lattice for ultra-cold atoms where arbitrarily large separation between the sites can be achieved without renouncing to the stability of ordinary lattices. Two collinear lasers, with slightly different commensurate wavelengths and retroreflected on a mirror, generate a superlattice potential with a periodic "beat-note" profile where the regions with large amplitude modulation provide the effective potential minima for the atoms. To prove the analogy with a standard large spacing optical lattice we study Bloch oscillations of a Bose Einstein condensate with negligible interactions in the presence of a small force. The observed dynamics between sites separated by ten microns for times exceeding one second proves the high stability of the potential. This novel lattice is the ideal candidate for the coherent manipulation of atomic samples at large spatial separations and might find direct application in atom-based technologies like trapped atom interferometers and quantum simulators.Comment: 5 pages, 4 figure

    Construção coletiva de conhecimentos e manejos agroecológicos promotores da saúde do solo.

    Get PDF
    O entendimento dos processos de construção da saúde dos solos amazônidas, considerados em sua grande maioria como mineralogicamente pobres, é uma das formas dos agricultores se tornarem soberanos em relação a insumos externos, químicos e dispendiosos, valorizar seus conhecimentos populares e construir a base necessária para a implantação ou otimização de qualquer sistema produtivo. Neste contexto, faz-se necessário produzir, resgatar, sistematizar e integrar conhecimentos científicos e populares sobre manejos agroecológicos que promovam a construção e a manutenção do solo e sobre indicadores da saúde do solo. Este trabalho visa apresentar as metodologias participativas utilizadas pelo Projeto Ajuri Agroflorestal da EMBRAPA Amazônia Ocidental em conjunto com os parceiros da Rede Maniva de Agroecologia para apropriar os agricultores da Associação de Produtores Orgânicos do Amazonas (APOAM) de conhecimentos e manejos agroecológicos de construção da saúde do solo amazônida

    Controlling quantum many-body dynamics in driven Rydberg atom arrays

    Get PDF
    The control of nonequilibrium quantum dynamics in many-body systems is challenging because interactions typically lead to thermalization and a chaotic spreading throughout Hilbert space. We investigate nonequilibrium dynamics after rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions. Using a programmable quantum simulator based on Rydberg atom arrays, we show that coherent revivals associated with so-called quantum many-body scars can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order. We map Hilbert space dynamics, geometry dependence, phase diagrams, and system-size dependence of this emergent phenomenon, demonstrating new ways to steer complex dynamics in many-body systems and enabling potential applications in quantum information science

    Generation and manipulation of Schrödinger cat states in Rydberg atom arrays

    Get PDF
    Quantum entanglement involving coherent superpositions of macroscopically distinct states is among the most striking features of quantum theory, but its realization is challenging because such states are extremely fragile. Using a programmable quantum simulator based on neutral atom arrays with interactions mediated by Rydberg states, we demonstrate the creation of “Schrödinger cat” states of the Greenberger-Horne-Zeilinger (GHZ) type with up to 20 qubits. Our approach is based on engineering the energy spectrum and using optimal control of the many-body system. We further demonstrate entanglement manipulation by using GHZ states to distribute entanglement to distant sites in the array, establishing important ingredients for quantum information processing and quantum metrology
    corecore