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1 Experimental setup

The Rydberg excitations are enabled by a two-color laser system at 420 nm and 1013 nm wave-

length. The 420 nm light is derived from a frequency-doubled titanium sapphire laser (M

Squared SolsTiS 4000 PSX F) locked to an ultrastable reference cavity (by Stable Laser Sys-

tems). The 1013 nm light is obtained from a high-power fiber amplifier (ALS-IR-1015-10-A-

SP by Azur Light Systems). The seed light is derived from a Fabry-Pérot laser diode injection

locked to an external cavity diode laser (CEL002 by MOGLabs) stabilized to the same reference

cavity and filtered by the cavity transmission (36). The detuning of both Rydberg lasers to the

intermediate state
∣∣∣6P3/2, F = 3,mF = −3

〉
is approximately 2π×2 GHz. The individual Rabi

frequencies of the two Rydberg lasers are Ω420/(2π) ≈ 174 MHz and Ω1013/(2π) ≈ 115 MHz.

This gives a two-photon Rabi frequency of Ω = Ω420Ω1013/(2∆) ≈ 2π×5 MHz. We define the

local phases of each atom’s states |0〉 and |1〉 in the reference frame associated with the local

phases of Rydberg excitation lasers, such that the two GHZ components have a relative phase

φ = 0 after state preparation.

To drive the optimal control pulses, we modulate the 420 nm Rydberg laser with an acousto-

optic modulator (AOM) driven by an arbitrary waveform generator (AWG, M4i.6631-x8 by

Spectrum). We correct the nonlinear response of the AOM to the drive amplitude by a feed-

forward approach to obtain the target output intensity pattern. Furthermore, the AOM efficiency

changes with changing frequency, which we compensate by feeding forward onto the waveform

amplitude to suppress the intensity variations with frequency. In addition, the light shift on the

Rydberg transition from the 420 nm laser can be as large as 2π × 4 MHz. While the pulse

intensity changes, this light shift changes, modifying the detuning profile. We therefore correct

the frequency profile as a function of the pulse intensity to compensate this shift. These steps

ensure that the experimentally applied pulse is a faithful representation of the desired profile.
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The local addressing beam patterns are generated by two AODs (DTSX400-800 by AA

Opto-electronic), each driven by multiple frequencies obtained from an arbitrary waveform

generator (M4i.6631-x8 by Spectrum).

2 Optimal control

Optimal control was originally developed as a tool to harness chemical reactions to obtain

the largest amount of desired products with given resources, and then introduced in quan-

tum information processing as a standard way of designing quantum protocols and quantum

devices (37–40) as well as in manipulating quantum many-body systems to exploit complex

phenomena (26,41–49). Quantum optimal control theory identifies the optimal shape of a time-

dependent control pulse to drive a quantum many-body system to accomplish given task, e.g.

state preparation or quantum gate implementation. The quality of the transformation is certified

by a Figure of Merit (FoM) that can be calculated or measured, e.g. the fidelity of the final state

with respect to the target one, the final occupation, or the energy.

In this work, the optimization is achieved through RedCRAB, the remote version of the

dressed Chopped RAndom Basis (dCRAB) optimal control via a cloud server (26, 41, 48).

Within the optimization, control fields such as the Rabi coupling Ω(t) are adjusted as Ω(t) =

Ω0(t) + f(t), where Ω0(t) is an initial guess function obtained from physical intuition or exist-

ing suboptimal solutions. The correcting function f(t) is expanded by randomized basis func-

tions. In this work, we chose a truncated Fourier basis. Thus, f(t) = Γ(t)
∑nc
k=1[Ak sin(ωkt) +

Bk cos(ωkt)], where ωk = 2π(k+rk)/τ are randomized Fourier frequencies with rk ∈ [−0.5, 0.5],

τ is the final time, and Γ(t) is a fixed scaling function to keep the values at initial and final times

unchanged, i.e., Γ(0) = Γ(τ) = 0. The optimization task is then translated into a search for the

optimal combination of {Ak, Bk} with a given rk to maximize the fidelity between the target

state and the time evolved state at τ . It can be solved by iteratively updating {Ak, Bk} using a
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standard Nelder-Mead algorithm (50). In the basic version of the CRAB algorithm, all rk are

fixed and the local control landscape is explored for all nc frequencies simultaneously. This

leads to a restriction in the number of frequencies that can be efficiently optimised. Using the

dressed CRAB (dCRAB) algorithm, only one Fourier frequency ωk is optimised at a time. We

then move on to ωk+1 after a certain number of iterations of the CRAB routine. This enables the

method to include an arbitrarily large number of Fourier components and deriving the solutions

without – whenever no other constraints are present – being trapped by local optima (25).

In the RedCRAB optimization, the server generates and transmits a trial set of controls to

the client user, who will then evaluate the corresponding FoM and communicates the feedback

information to the server finishing one iteration loop (Fig. S1). The optimization continues

iteratively and the optimal set of controls, as well as the corresponding FoM are derived. In

the RedCRAB optimization, the user can either evaluate the FoM by numerical calculation,

namely open-loop optimization, or by experimental measurement, which is called closed-loop

optimization. In this work, open-loop optimization was carried out only. The resulting controls

could later serve as the initial guess for a future closed-loop optimization. This last step would

ensure that the resulting controls are robust, since all unknown or not modelled experimental

defects and perturbations would automatically be corrected for.

For the open-loop optimization of the pulse, we constrained the preparation time to 1.1µs

and allowed the detuning ∆/(2π) to vary between −20 MHz and 20 MHz, while Ω/(2π) could

vary between 0 − 5 MHz. The resulting pulses are shown in Fig. S2. While shorter pulses

can work sufficiently well for smaller system sizes, we use an equal pulse duration for all N

for better comparability. We find that the optimized pulses for larger systems appear smoother

than for smaller system sizes, where the pulses bear less resemblance to an adiabatic protocol.

However, the adiabaticity does not improve for larger system sizes, owing to the shrinking

energy gaps.
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3 Optimal control dynamics

To gain insight into the timescales required to prepare a GHZ state in our setup, we can compare

our optimal control protocol with a minimal quantum circuit consisting of a series of two-qubit

gates that would achieve the same task. In this circuit, a Bell pair is created in the first layer

p = 1 in the middle of the array using the Rydberg blockade, which for our maximal coupling

strength of Ω/(2π) = 5 MHz takes 100 ns/
√

2. The entanglement can be spread to the two

atoms adjacent to this Bell pair by simultaneously applying a pair of local π pulses of 100 ns to

those sites, corresponding to controlled rotations. A sequence of such gate layers p = 2, ..., 10,

including operations on qubit pairs and the free evolution of other qubits, leads to the same GHZ

state we prepare. This gate sequence requires approximately 1µs, which is within 10% of the

total evolution time required in our optimal control sequence, which builds up the entanglement

in parallel. Furthermore, the fidelity of each layer of such a circuit effectively acting on all

N = 20 qubits needs to be higher than 0.94 to achieve the 20-qubit GHZ fidelity demonstrated

in this work.

It is interesting to compare this required evolution time with a parameter ramp that tries

to adiabatically connect the initial state to the GHZ state. To this end, we parametrize the

detuning and Rabi frequency as ∆(s) = (1 − s)∆0 + s∆1 and Ω(s) = Ωmax[1 − cos12(πs)]

respectively. A naı̈ve (unoptimized) linear ramp of the detuning corresponds to choosing s =

t/T . Alternatively, one can adjust the local ramp speed to minimize diabatic transitions, for

example by choosing s(t) minimizing

D =

(
ds

dt

)2 ∑
n>0

|〈En(s)|∂sH(s)|E0(s)〉|2

(En(s)− E0(s))2

during a ramp of duration T . Here |En(s)〉 are the instantaneous eigenstates of the Hamilto-

nian H(s) specified by the parameters Ω(s) and ∆(s), with |E0(s)〉 denoting the instantaneous

ground state. In Figure S3, we show the results of numerical simulations using both the linear
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sweep and a sweep that minimizes the strength of diabatic processes quantified by D. Both

sweep profiles require larger total evolution time T than the optimal control pulse to reach

similar fidelities.

To understand the origin of the speedup through optimal control, we numerically simulate

the corresponding evolution and analyze the population of the instantaneous energy eigenstates

(Fig. S4). The optimal control dynamics can be divided into three different regions: (I) A fast

initial quench, (II) a slow quench, and (III) a fast final quench. Even though the change in the

Hamiltonian parameters in region (I) is rather rapid, the system remains mostly in the instan-

taneous ground state, with negligible populations of the exited states, since the energy gap is

large. In contrast, in region (II) the parameters change slows down, reflecting the fact that the

energy gap becomes minimal. Unlike the adiabatic case however, one can observe nontrivial

population dynamics, with a temporary population of excited states. Importantly, the optimal

control finds a path in the parameter space such that the population is mostly recaptured in the

ground state at the end of region (II). Finally, in region (III) the gap is large again and the system

parameters are quickly changed to correct also for higher order contributions. This suggests that

it actively uses diabatic transitions that go beyond the adiabatic principle. This mechanism is re-

lated to the recently discussed speedup in the context of the quantum approximate optimization

algorithm (QAOA) (30, 31).

4 Quantifying detection

The many-body dynamics involving coherent excitation to Rydberg states occurs during a few-

microsecond time window in which the optical tweezers are turned off. After the coherent

dynamics, the tweezers are turned back on, and atoms in the ground state |0〉 are recaptured.

However, there is a small but finite chance of losing these atoms. To quantify this error, we

perform the GHZ state preparation experiment while disabling the 420 nm Rydberg pulse. This
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keeps all atoms in state |0〉, and we measure the loss probability to find a 0.9937(1) detection

fidelity.

Atoms in state |1〉 on the other hand have a small chance of being misidentified as being in

state |0〉, as these atoms can decay prematurely from the Rydberg state to the ground state and

get recaptured by the tweezers. This error probability can be measured by preparing atoms at

sufficiently large distances as to be non-interacting and applying a calibrated π pulse to transfer

all atoms to |1〉 and measure the probability of recapturing them. However, part of this signal is

given by the π pulse infidelity, i.e. a small fraction of atoms which did not get excited to |1〉 in

the first place.

To quantify the π pulse fidelity, we note that a Rydberg atom that decays and is recaptured

can decay either into the F = 2 or F = 1 ground states with branching ratios α and β, respec-

tively (α + β = 1). Our initial optical pumping of atoms into |0〉 has high fidelity > 0.998,

measured using microwave spectroscopy on different sublevels of the F = 2 manifold. Thus,

the final population of F = 1 atoms should be given only by Rydberg atom decay/recapture

events. Following a π pulse to excite all atoms to the Rydberg state, the final measured popula-

tion in F = 1 is p1 = p × β, where p is the total decay and recapture probability of a Rydberg

atom. Meanwhile, the final measured population in F = 2 is p2 = p × α + ε, which includes

both decay events from Rydberg atoms as well as residual population ε left from an imperfect

π pulse. Experimentally, we separately measure the total recaptured ground state population

(p1 +p2), as well as the F = 1 population p1 only (by a resonant push-out of F = 2 atoms). We

additionally can vary the overall recapture probability p by changing the depth of the tweezers

that we recapture atoms in, which changes the repulsive force exerted by the optical tweezers

on Rydberg atoms (28). We measure p1 and (p1 + p2) at four different total recapture probabil-

ities to extract the π pulse infidelity as ε = 0.006(3) (Fig. S5). From these measurements, we

conclude a Rydberg detection fidelity of 0.9773(42).
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Detection errors of |0〉 can be mitigated by implementing ground-state cooling in the tweez-

ers (51, 52), which reduces the probability of loss after releasing the atoms. The detection

fidelity of |1〉 can be improved by using Rydberg states with a longer radiative lifetime, ac-

tively ionizing the Rydberg atoms by electric or optical fields, or by pulling them away from

the trapping region with electric field gradients.

5 Accounting for detection imperfections

The small imperfections in state detection of single qubits leads to a prominent effect on the

analysis of large systems. The probability for a single detection error is sufficiently low that

multiple errors per chain are very unlikely, and we observe that the reduction in probability of

observing the correct GHZ pattern is dominated by these errors, as opposed to excitations of the

system (Fig. S6A). This conclusion is further confirmed by noting that near-ideal correlations

extend across the entire system (Fig. S7).

To properly infer the obtained fidelities, we account for these imperfections using the fol-

lowing procedure:

Coherences: The coherences are extracted from the amplitude of parity oscillations. Each

point in the parity oscillation is analyzed from the measured distribution of the number of exci-

tations in the system. We encode this measured probability distribution in the vector W, where

Wn is the probability to observe exactly n excitations in the system (0 ≤ n ≤ N ). The true

probability distribution of excitation numbers, prior to the effect of detection errors, is denoted

V. Detection errors transform this distribution according to a matrix M , where Mmn encodes

the probability that a state with n excitations will be detected as havingm excitations. Each ma-

trix element is calculated using combinatoric arguments from the measured detection fidelities.

We determine the true distribution V as the one that minimizes the cost function |MV −W|2.

(Fig. S6B). This procedure is similar to applying the inverse matrix M−1 to the measured dis-
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tribution W, but is more robust in the presence of statistical noise on the measured distribution.

Error bars on the inferred values are evaluated by random sampling of detection fidelities, given

our measured values and uncertainties.

Populations: We carry out a similar procedure for the population data; however, we are in-

terested in assessing the probability of two particular target states, which are defined not only by

their number of excitations but also by their staggered magnetizations Mn =
∑N
i=1(−1)i〈σ(i)

z 〉.

Our procedure therefore operates by grouping all possible microstates according to their com-

mon staggered magnetization and number of excitations (Fig. S6C). For N particles, there are

in general (N/2 + 1)2 such groups. As before, we denote the raw measured distribution with

respect to these groups as W. We construct a detection error matrix M that redistributes pop-

ulations between groups according to the measured detection error rates. We optimize over

all possible true distributions to find the inferred distribution V that minimizes the cost func-

tion |MV −W|2. Following this procedure, we sum the populations in the two groups that

uniquely define the two target GHZ components with a staggered magnetization of ±N , and

N/2 excitations.

6 Bounding the GHZ state coherence

We expand an experimental GHZ-like density matrix in the following form

ρ = α1 |AN〉〈AN |+ α2

∣∣∣AN〉〈AN ∣∣∣+ (
β |AN〉

〈
AN

∣∣∣+ β∗
∣∣∣AN〉〈AN |)+ ρ′ (1)

where |AN〉 = |0101 · · ·〉 and
∣∣∣AN〉 = |1010 · · ·〉 are the target GHZ components, αi charac-

terizes the diagonal populations in these states (0 ≤ αi ≤ 1), β characterizes the off-diagonal

coherence between these states (0 ≤ |β| ≤ 1/2), and ρ′ contains all other parts of the density

matrix. The GHZ fidelity of state ρ is given by:

F = 〈GHZN | ρ |GHZN〉 =
α1 + α2

2
+ Re(β) (2)
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To measure the coherence |β|, we implement a staggered magnetic field to which the target

GHZ state is maximally sensitive:

Hst =
h̄δ

2

N∑
i=1

(−1)iσ(i)
z (3)

Applying Hst to the system for time T results in unitary phase accumulation U(T ) =

exp (−iHstT/h̄). We then apply a unitary U to the system and measure in the computational

basis. From repeated measurements, we calculate the expectation value of the global parity op-

erator P =
∏
i σ

(i)
z as a function of the phase accumulation time T . Denote the time-dependent

expectation value E(T ), where −1 ≤ E(T ) ≤ 1.

We show that if E(T ) has a frequency component that oscillates at a frequency of Nδ, then

the amplitude of this frequency component sets a lower bound for |β|. Importantly, this holds

for any unitary U used to detect the phase accumulation.

Proof: The expectation value E(T ) can be written explicitly as the expectation value of the

time-evolved observable P → U †(T )U †PUU(T ). In particular,

E(T ) = Tr[ρU †(T )U †PUU(T )] =
∑
n

〈n| ρU †(T )U †PUU(T ) |n〉 (4)

where |n〉 labels all computational basis states. Since the phase accumulation Hamiltonian

Hst is diagonal in the computational basis, the basis states |n〉 are eigenvectors of U(T ) with

eigenvalues denoting the phase accumulation. Specifically,

Hst |n〉 =
h̄δ

2
Mn |n〉 ⇒ U(T ) |n〉 = e−iδTMn/2 |n〉 (5)

where Mn is the staggered magnetization of state |n〉 defined earlier. The staggered magne-

tization of the state |AN〉 is maximal: MAN
= N , and the staggered magnetization of

∣∣∣AN〉
is minimal: MAN

= −N . Note that all other computational basis states have strictly smaller
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staggered magnetizations. Inserting an identity operator in Eq. (4):

E(T ) =
∑
n,m

〈n| ρ |m〉〈m|U(T )†U †PUU(T ) |n〉 =
∑
n,m

e−iδT (Mn−Mm)/2 〈n| ρ |m〉〈m| U †PU |n〉

(6)

The highest frequency component comes from the states with maximally separated stag-

gered magnetization, |n〉 = |An〉 and |m〉 =
∣∣∣An〉. Separating out this frequency component as

F (T ), we obtain:

F (T ) = 2Re
[
e−iNδT 〈AN | ρ

∣∣∣AN〉〈AN ∣∣∣U †PU |AN〉] = 2Re
[
βe−iNδT

〈
AN

∣∣∣U †PU |AN〉]
(7)

We note that the parity matrix element is bounded as 0 ≤
∣∣∣〈AN |U †PU|AN〉∣∣∣ ≤ 1. Fur-

thermore, the matrix element is real-valued and positive for the unitary U considered in the

experiment. Fitting F (T ) to an oscillation with amplitude C ≥ 0 and phase φ according to

F (T ) = C cos(NδT − φ), we produce our lower bound for the off-diagonal coherence β:

|β| ≥ C/2; arg(β) = φ (8)

7 Parity detection

The ideal observable to measure GHZ phase is the parity Px =
∏
i σ

(i)
x . However, the pres-

ence of Rydberg interactions and the Rydberg blockade prevents us from rotating all qubits

such that we can measure in this basis. Instead, in this work we generate a unitary Ux =

exp
(
−iΩt/2∑i σ

(i)
x − iHintt/h̄

)
by resonantly driving all atoms in the presence of these in-

teractions given by Hint for a fixed, optimized time (Fig. S8), and subsequently measure the

parity P =
∏
i σ

(i)
z in the computational basis. The finite duration of the unitary Ux incurs a

small amount of additional infidelity, owing both to dephasing and an additional laser scatter-

ing. However, we estimate that this effect should only lead to small losses in fidelity on the

percent level.
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While it is not obvious that the parity observable used here is suitable, we can understand

the parity oscillations in the picture of weakly interacting spin-1 particles defined on dimers

of neighboring pairs of sites. For two adjacent sites, we can define eigenstates of a spin-1 Sz

operator as |◦•〉 = |−〉, |◦◦〉 = |0〉, and |•◦〉 = |+〉. In this notation, the antiferromagnetic

GHZ state we prepare is given by a ferromagnetic GHZ state in the spin-1 basis:

|GHZN〉 =
1√
2

(|+ + + · · ·〉+ |− − − · · ·〉) (9)

We must express all operations on the GHZ state in this new notation. In particular, the trans-

verse field of the form h̄Ω/2
∑
i σ

(i)
x applied to individual atoms gets transformed to an operation

h̄Ω/
√

2
∑
j S

(j)
x on all dimers. Furthermore, the staggered field h̄δ/2

∑
i(−1)iσ(i)

z we apply to

individual atoms to rotate the GHZ phase is equivalent to an operation of the form h̄δ
∑
j S

(j)
z

acting on individual dimers.

The parity operator in the single-qubit basis P =
∏
i σ

(i)
z can be transformed into the dimer

basis as

P =
∏
j

(
− |+〉〈+|j − |−〉〈−|j + |0〉〈0|j

)
(10)

by noting that the three dimer states are eigenstates of P , i.e. P |±〉 = − |±〉 and P |0〉 = |0〉.

Assuming we begin from a GHZ state, applying a rotation on all dimers for a duration given

by Ωt = π/
√

2 saturates the difference in P between GHZ states of opposite phase. This shows

that such a protocol would be optimal if the dimer approximation were exact. However, in-

teractions between dimers cannot be neglected. In particular, the Rydberg blockade suppresses

configurations of the form |· · · −+ · · ·〉 owing to the strong nearest-neighbor interaction V , and

neighboring dimers of the same type such as |· · · ± ± · · ·〉 have a weak interaction given by the

next-to-nearest neighbor interaction strength V2 = V/26. We can thus express the interactions

in the system as

Hint

h̄
=

N/2−1∑
j=1

V2 |+〉〈+|j |+〉〈+|j+1 + V2 |−〉〈−|j |−〉〈−|j+1 + V |−〉〈−|j |+〉〈+|j+1 (11)
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An exact simulation of the dimer rotation under the interaction Hamiltonian (11) shows that both

these interaction effects reduce the parity contrast by a small amount. In the recently discussed

context of quantum many-body scars (20, 32, 53, 54), these effects of residual interactions lead

of small deviations from a stable periodic trajectory through phase space.

8 Staggered field calibration

To apply the staggered field (3), we address each of the even sites in the array with a focused

off-resonant laser beam at 420 nm. However, the unitary in question requires a staggered field

with opposite sign on every site. We compensate for the missing acquired phase on the sites

in between the addressed ones by shifting the phase of the Rydberg laser, through a change

in phase of the radio-frequency drive of the AOM. The intensity of each addressing beam is

measured by applying a spin-echo sequence with an addressing pulse of variable duration to

determine the light shift on the Rydberg transition. We correct for inhomogeneous intensities

so that all atoms are subject to the same light shift.

We measure and calibrate the staggered field by measuring the effect of the field on each

atom individually. To do so, we alternately rearrange the atoms to form different subsets of

the 20-atom system that are sufficiently far apart to avoid interactions between them. In this

configuration, every atom is then subject to a π/2 rotation about the x-axis, followed by the

staggered field for variable duration, then a π/2 rotation about the y-axis, to distinguish positive

from negative phase evolution. With an additional π rotation about the y-axis, we perform a

spin echo to mitigate effects of dephasing. The outcome of this protocol is shown in Fig. S9

and demonstrates the implementation of the staggered magnetic field. By switching the local

addressing beams to the opposite set of alternating sites, we switch the sign of the staggered

field, enabling the measurement of both positive and negative phase accumulation.

14



9 Measured GHZ fidelities

For each system size N , we measure the GHZ populations and the GHZ coherence by parity

oscillations (Figs. 2, 3 of the main text). From the raw measurements, we infer the true GHZ

fidelity using the maximum likelihood procedure discussed in Section 5. All measured values

are shown in table S1. Error bars on raw populations represent a 68% confidence interval

for the measured value. Error bars on the raw coherences are fit uncertainties from the parity

oscillations. Error bars on the inferred values include propagation of the uncertainty in the

estimation of the detection fidelities.

10 Experimental Imperfections

We identify a number of experimental imperfections that to varying degrees can limit the co-

herent control of our atomic system.

1. Atomic temperature: The atom temperature of ∼ 10µK leads to fluctuating Doppler

shifts in the addressing lasers of order ∼ 2π × 43 kHz, as well as fluctuations in atomic

position that leads to variation in Rydberg interactions strengths. These fluctuations are

included in the simulations shown in the main text Figure 3. These effects can be dramat-

ically reduced by improved atomic cooling, most notably by sideband cooling within the

optical tweezers to the motional ground state (51, 52).

2. Laser scattering: The two-photon excitation scheme to our chosen Rydberg state leads

to off-resonant scattering from the intermediate state, 6P3/2. This scattering rate has a

timescale of 50 − 100µs for the two laser fields, and can be reduced by higher laser

powers and further detuning from the intermediate state.

3. Rydberg state lifetime: The 70S Rydberg state has an estimated lifetime of 150 µs (55),
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limited both by radiative decay and blackbody-stimulated transitions. This effect could

be mitigated by selecting a higher Rydberg state with a longer lifetime or by cryogenic

cooling of the blackbody environment.

Additional error sources that may limit our coherence properties include laser phase noise,

which can be mitigated by better laser sources and stabilization schemes, and fluctuations in

local addressing beam intensities and positions, which can be addressed by active feedback on

the beam positions and improved thermal and mechanical stability of the setup. Simulations

predict that we could go beyond the system sizes studied here. While GHZ states of N = 24

could be within reach with current parameters, generation of even larger GHZ states should be

feasible with the additional technical improvements discussed above.

11 Ground-state qubit encoding

The GHZ state parity could be more easily detected and manipulated if the qubits were encoded

in a basis of hyperfine sublevels of the electronic ground state. In particular, one can consider

two alternative qubit states |0̃〉 =
∣∣∣5S1/2, F = 1,mF = −1

〉
and |1̃〉 =

∣∣∣5S1/2, F = 2,mF = −2
〉

.

Rotations between these states are possible through stimulated Raman transitions or microwave

driving, and the interactions are introduced by coupling |1̃〉 to a Rydberg level |r〉. This

type of hyperfine encoding has been employed in multiple experiments with cold Rydberg

atoms (22,23,33). To prepare GHZ states in this basis, all atoms can be initialized in |1̃〉 and the

system transferred to the state |1̃r1̃r · · ·〉 + |r1̃r1̃ · · ·〉 using the method described in this work.

A ground-state qubit π pulse followed by a π pulse on the Rydberg transition transforms the

state into |0̃1̃0̃1̃ · · ·〉+ |1̃0̃1̃0̃ · · ·〉, enabling the long-lived storage of entanglement. Additionally,

local qubit rotations can flip the state of every other site to prepare the canonical form of the

GHZ state, |0̃0̃0̃ · · ·〉 + |1̃1̃1̃ · · ·〉, which can achieve entanglement-enhanced metrological sen-

sitivity to homogeneous external fields (2). Incorporating this type of hyperfine qubit encoding

16



with Rydberg qubit control will be important for realizing quantum gates and deeper quantum

circuits in future experiments.
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Figure S1: RedCRAB optimization loop. The remote dCRAB server generates and transmits a
trial set of controls to the user, who evaluates the corresponding performance in terms of a FoM
and sends the feedback information to the server, concluding one iteration loop. In the next loop,
the server tends to generate an improved set of controls based on previous feedback information.
The optimization continues until it converges. The FoM evaluation can be achieved either
by numerical calculation (open-loop optimization) or experimental measurement (closed-loop
optimization).
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Figure S2: Optimal control pulse diagrams. Shown are the Rabi frequency (top) and detuning
profiles (bottom) for the different system sizes investigated here.
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Figure S3: Comparison of ramping profile fidelities. Comparison of linear ramps (blue) to
optimized adiabatic ramps (orange) for N = 12 as a function of the total ramp time T . The
optimal control pulse used in the experiment takes T = 1.1 µs and achieves a higher fidelity
than either the linear ramp or the optimized adiabatic ramp.
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Figure S4: Dynamics of an optimized 20-atom GHZ state preparation. A, Optimized control pa-
rameters Ω(t) and ∆(t) for N = 20 atoms. B, Energy eigenvalues of instantaneous eigenstates
of the Hamiltonian relative to the ground state energy. The population in each energy eigen-
state is color coded on a logarithmic scale. Light gray points correspond to populations smaller
than 0.01. C, Probability in each instantaneous eigenstate as the initial state evolves under the
time-dependent Hamiltonian. The probability is dominated by the ground state and a few ex-
cited states. The time evolution is computed by exact numerical integration of Schrödinger’s
equation, and 100 lowest energy eigenstates are obtained by using Krylov subspace method
algorithms. For computational efficiency, we only consider the even parity sector of the Hamil-
tonian with no more than three nearest neighboring Rydberg excitations owing to the Rydberg
blockade.
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Figure S5: Quantifying detection errors. A, Measurement of the recaptured Rydberg atoms
in the ground state (blue points) and in the F = 1 ground-state manifold (orange points) as a
function of the tweezer depth upon recapture. B, Recaptured populations in all ground state
levels. The intersection with the horizontal axis gives an estimate of the atoms that were not
excited to the Rydberg state, bounding the π pulse fidelity.
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Figure S6: Inference of parity and populations. A, Histogram of observed patterns after prepar-
ing a 20-atom GHZ state. Open circles denote atoms in |0〉 and filled circles denote atoms in
state |1〉. Blue domains mark regions where a single detection error has likely occurred, since
such patterns are energetically costly at large positive detuning of the Rydberg laser. Red do-
mains mark true domain walls, where the antiferromagnetic order is broken. Following the
correct GHZ patterns, the 14 most observed patterns are consistent with a single detection error.
B, Distribution of number of excitations measured for two different times of the parity oscilla-
tion for a 20-atom array, with the upper (lower) plot at φ = 0 (φ = π/20) of phase accumulation
per atom, showing a net positive (negative) parity. Blue bars show directly measured values,
orange bars show the statistically inferred parent distribution, and red bars denote the parent
distribution after adding simulated errors to compare to the raw data. C, Staggered magnetiza-
tion Mn extracted from the measurement of GHZ populations for 20 atoms. The vertically split
bars with different shading denote different occurrences of number of excitations.
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Figure S8: Parity signal measured as a function of the time the operation Ux is applied. The
total time includes delays in the AOM response and the finite laser pulse rise time.
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System size N 4 8 12 16 20
Raw populations 0.893(6) 0.797(8) 0.695(9) 0.629(12) 0.585(14)

Inferred 0.946(10) 0.892(17) 0.824(21) 0.791(29) 0.782(32)
Raw coherence 0.710(12) 0.516(11) 0.371(10) 0.282(11) 0.211(11)

Inferred 0.759(11) 0.598(16) 0.462(19) 0.373(19) 0.301(18)
Raw fidelity 0.801(7) 0.657(7) 0.533(7) 0.455(8) 0.398(9)

Inferred 0.852(7) 0.745(12) 0.643(14) 0.582(17) 0.542(18)

Table S1: Measured GHZ data for all system sizes. Errors denote 68% confidence intervals.
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