71 research outputs found

    Transport and traffic analytics in smart cities

    Get PDF
    Vast generation of high resolution spatial and temporal data, particularly in urban settings, started revolution in mobility and human behavior related research. However, after initial wave of first data oriented insights their integration into ongoing, and traditionally used, planning and decision making processes seems to be hindered by still opened challenges. These challenges suggest need for stronger integration between data analytics and dedicated domain knowledge. Special session on Transport and Traffic Analytics in Smart Cities tackles these challenges from transport planners’ point of view. Collection of papers aims at identifying the existing gaps and bridging between related disciplines with aspiration to foster faster integration of data driven insights into smart cities’ dedicated planning

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    Forecasting the state of health of electric vehicle batteries to evaluate the viability of car sharing practices

    Get PDF
    Car sharing practices are introducing electric vehicles into their fleet. However, literature suggests that at this point shared electric vehicle systems are failing to reach satisfactory commercial viability. Potential reason for this is the effect of higher vehicle usage which is characteristic for car sharing, and the implication on the battery state of health. In this paper, we forecast state of health for two identical electric vehicles shared by two different car sharing practices. For this purpose, we use real life transaction data from charging stations and different electric vehicles’ sensors. The results indicate that insight into users’ driving and charging behaviour can provide valuable point of reference for car sharing system designers. In particular, the forecasting results show that the moment when electric vehicle battery reaches its theoretical end of life can differ in as much as ÂŒ of time when vehicles are shared under different conditions

    Use of supervised machine learning for GNSS signal spoofing detection with validation on real-world meaconing and spoofing data : part I

    Get PDF
    The vulnerability of the Global Navigation Satellite System (GNSS) open service signals to spoofing and meaconing poses a risk to the users of safety-of-life applications. This risk consists of using manipulated GNSS data for generating a position-velocity-timing solution without the user's system being aware, resulting in presented hazardous misleading information and signal integrity deterioration without an alarm being triggered. Among the number of proposed spoofing detection and mitigation techniques applied at different stages of the signal processing, we present a method for the cross-correlation monitoring of multiple and statistically significant GNSS observables and measurements that serve as an input for the supervised machine learning detection of potentially spoofed or meaconed GNSS signals. The results of two experiments are presented, in which laboratory-generated spoofing signals are used for training and verification within itself, while two different real-world spoofing and meaconing datasets were used for the validation of the supervised machine learning algorithms for the detection of the GNSS spoofing and meaconing

    How to monitor sustainable mobility in cities? Literature review in the frame of creating a set of sustainable mobility indicators

    Get PDF
    The role of sustainable mobility and its impact on society and the environment is evident and recognized worldwide. Nevertheless, although there is a growing number of measures and projects that deal with sustainable mobility issues, it is not so easy to compare their results and, so far, there is no globally applicable set of tools and indicators that ensure holistic evaluation and facilitate replicability of the best practices. In this paper, based on the extensive literature review, we give a systematic overview of relevant and scientifically sound indicators that cover different aspects of sustainable mobility that are applicable in different social and economic contexts around the world. Overall, 22 sustainable mobility indicators have been selected and an overview of the applied measures described across the literature review has been presented

    A collaborative stakeholder decision-making approach for sustainable urban logistics

    Get PDF
    Cities strongly rely on efficient urban logistics to ensure their attractiveness, quality of life, and economic development. In the same time, they strive to ensure livable and safe environments around its road network, where the increased presence of light and heavy goods vehicles raises questions of regarding safety and environmental impacts. Recent literature has well-recognized the need to consider different stakeholders’ perspectives on these issues, in order to achieve desired outcomes. In this paper, we introduce a collaborative stakeholders’ decision-making approach for sustainable urban logistics, and demonstrate its applicability on a real-life example. The suggested approach extends existing route planning approaches by considering route sustainability as a part of an arc’s traversal cost. The integration of route sustainability is based on the adoption of a multi-criterial decision-making approach, with the possibility of including different stakeholders’ points of view, and evaluating the sustainability cost concerning the route’s spatial context. To demonstrate the applicability of the suggested approach, we extract the route sustainability cost from the traffic sign database, and implement the findings on a real-life example. Furthermore, the suggested approach exhibits a high level of transferability to various local contexts, where local stakeholders might have a different view on the route sustainability than is the case in our exampl

    Integrating big data into a sustainable mobility policy 2.0 planning support system

    Get PDF
    It is estimated that each of us, on a daily basis, produces a bit more than 1 GB of digital content through our mobile phone and social networks activities, bank card payments, location-based positioning information, online activities, etc. However, the implementation of these large data amounts in city assets planning systems still remains a rather abstract idea for several reasons, including the fact that practical examples are still very strongly services-oriented, and are a largely unexplored and interdisciplinary field; hence, missing the cross-cutting dimension. In this paper, we describe the Policy 2.0 concept and integrate user generated content into Policy 2.0 platform for sustainable mobility planning. By means of a real-life example, we demonstrate the applicability of such a big data integration approach to smart cities planning process. Observed benefits range from improved timeliness of the data and reduced duration of the planning cycle to more informed and agile decision making, on both the citizens and the city planners end. The integration of big data into the planning process, at this stage, does not have uniform impact across all levels of decision making and planning process, therefore it should be performed gradually and with full awareness of existing limitations

    Big data-driven multimodal traffic management : trends and challenges

    Get PDF

    Forecasting transport mode use with support vector machines based approach

    Get PDF
    The paper explores potential to forecast what transport mode one will use for his/her next trip. The support vector machines based approach learns from individual's behavior (validated GPS tracks) to support smart city transport planning services. The overall success rate, in forecasting the transport mode, is 82 %, with lower confusion for private car, bike and walking

    Use of supervised machine learning for GNSS signal spoofing detection with validation on real-world meaconing and spoofing data : part II

    Get PDF
    Global Navigation Satellite System (GNSS) meaconing and spoofing are being considered as the key threats to the Safety-of-Life (SoL) applications that mostly rely upon the use of open service (OS) signals without signal or data-level protection. While a number of pre and post correlation techniques have been proposed so far, possible utilization of the supervised machine learning algorithms to detect GNSS meaconing and spoofing is currently being examined. One of the supervised machine learning algorithms, the Support Vector Machine classification (C-SVM), is proposed for utilization at the GNSS receiver level due to fact that at that stage of signal processing, a number of measurements and observables exists. It is possible to establish the correlation pattern among those GNSS measurements and observables and monitor it with use of the C-SVM classification, the results of which we present in this paper. By adding the real-world spoofing and meaconing datasets to the laboratory-generated spoofing datasets at the training stage of the C-SVM, we complement the experiments and results obtained in Part I of this paper, where the training was conducted solely with the use of laboratory-generated spoofing datasets. In two experiments presented in this paper, the C-SVM algorithm was cross-fed with the real-world meaconing and spoofing datasets, such that the meaconing addition to the training was validated by the spoofing dataset, and vice versa. The comparative analysis of all four experiments presented in this paper shows promising results in two aspects: (i) the added value of the training dataset enrichment seems to be relevant for real-world GNSS signal manipulation attempt detection and (ii) the C-SVM-based approach seems to be promising for GNSS signal manipulation attempt detection, as well as in the context of potential federated learning applications
    • 

    corecore