14 research outputs found
A fluorescence photobleaching study of the microsecond reorientational motions of DNA
We have conducted a polarized fluorescence photobleaching recovery (FPR) study of the rotational dynamics of ethidium azide labeled DNA. Polarized photobleaching experiments provide data on microsecond and millisecond molecular reorientation that complement the information available from nanosecond fluorescence depolarization studies. In polarized FPR experiments an anisotropic angular concentration of fluorophore is created by bleaching dye molecules in a preferred orientation with a short, intense pulse of polarized light. The sample is then weakly illuminated, and the temporal variation in the emitted fluorescence is monitored. The fluorescence signal will systematically change as molecules undergo post-bleach reorientation and the angular distribution of dye tends toward isotropy. We have observed that the time dependence of our microsecond FPR curves is also determined in part by nonrotational phenomena. To isolate the reorientational recovery we conduct our FPR experiments in two modes (called parallel and perpendicular) that differ only in the polarization of the bleaching light. A quotient function, R(t), is constructed from the data obtained in these two modes; the variation with time of this new quantity is governed solely by processes that are sensitive to the polarization of the incident light (e.g., molecular rotation). It is found experimentally that R(t) remains constant, as expected, for rotationally restricted DNA systems despite a temporal recovery in the parallel and perpendicular FPR curves. We also follow the dynamics of solutions of phage lambda DNA as revealed in the temporal dependence of R(t). This DNA system rotationally relaxes after approximately 100 microseconds and the dye/DNA complex reorients substantially during the 10-microseconds bleach period. Our FPR data are interpreted in terms of dynamic models of DNA motion
Recommended from our members
Room temperature observation of quantum jumps of single molecule into dark states
Fluctuations in the room temperature emission rate from single dye molecules which are excited with the near field scanning optical microscope reveal long (seconds) and short ({approximately} milliseconds) lived dark states
Spectral study of the peripheral site of ligand binding in the active center of cholinesterases from different natural sources
Steady-state and time-resolved fluorescence studies of conformational changes induced by cyclic AMP and DNA binding to cyclic AMP receptor protein from Escherichia coli
A Bni4-Glc7 Phosphatase Complex That Recruits Chitin Synthase to the Site of Bud Emergence
Bni4 is a scaffold protein in the yeast Saccharomyces cerevisiae that tethers chitin synthase III to the bud neck by interacting with septin neck filaments and with Chs4, a regulatory subunit of chitin synthase III. We show herein that Bni4 is also a limiting determinant for the targeting of the type 1 serine/threonine phosphatase (Glc7) to the bud neck. Yeast cells containing a Bni4 variant that fails to associate with Glc7 fail to tether Chs4 to the neck, due in part to the failure of Bni4(V831A/F833A) to localize properly. Conversely, the Glc7-129 mutant protein fails to bind Bni4 properly and glc7-129 mutants exhibit reduced levels of Bni4 at the bud neck. Bni4 is phosphorylated in a cell cycle-dependent manner and Bni4(V831A/F833A) is both hyperphosphorylated and mislocalized in vivo. Yeast cells lacking the protein kinase Hsl1 exhibit increased levels of Bni4-GFP at the bud neck. GFP-Chs4 does not accumulate at the incipient bud site in either a bni4::TRP1 or a bni4(V831A/F833A) mutant but does mobilize to the neck at cytokinesis. Together, these results indicate that the formation of the Bni4-Glc7 complex is required for localization to the site of bud emergence and for subsequent targeting of chitin synthase
Efficiency of Resonance Energy Transfer in Homo-Oligomeric Complexes of Proteins
A theoretical model is proposed for the apparent efficiency of fluorescence (Förster) resonance energy transfer (FRET) in mixtures of free monomers and homo-oligomeric protein complexes of uniform size. The model takes into account possible pathways for transfer of optical excitations from single donors to multiple acceptors and from multiple donors (non-simultaneously) to single acceptors. This necessary departure from the standard theory has been suggested in the literature, but it has only been successfully implemented for a few particular cases, such as for particular geometries of the oligomers. The predictions of the present theoretical model differ significantly from those of the standard theory, with the exception of the case of dimers, for which agreement is observed. This model therefore provides new insights into the FRET behavior of oligomers comprising more than two monomers, and also suggests means for determining the size of oligomeric protein complexes as well as the proportion of associated and unassociated monomers
DNA methylation signature of chronic low-grade inflammation and its role in cardio-respiratory diseases
Chronic inflammation, marked by C-reactive protein, has been associated with changes in methylation, but the causal relationship is unclear. Here, the authors perform a Epigenome-wide association meta-analysis for C-reactive protein levels and find that these methylation changes are likely the consequence of inflammation and could contribute to disease.We performed a multi-ethnic Epigenome Wide Association study on 22,774 individuals to describe the DNA methylation signature of chronic low-grade inflammation as measured by C-Reactive protein (CRP). We find 1,511 independent differentially methylated loci associated with CRP. These CpG sites show correlation structures across chromosomes, and are primarily situated in euchromatin, depleted in CpG islands. These genomic loci are predominantly situated in transcription factor binding sites and genomic enhancer regions. Mendelian randomization analysis suggests altered CpG methylation is a consequence of increased blood CRP levels. Mediation analysis reveals obesity and smoking as important underlying driving factors for changed CpG methylation. Finally, we find that an activated CpG signature significantly increases the risk for cardiometabolic diseases and COPD
DNA methylation signature of chronic low-grade inflammation and its role in cardio-respiratory diseases
Chronic inflammation, marked by C-reactive protein, has been associated with changes in methylation, but the causal relationship is unclear. Here, the authors perform a Epigenome-wide association meta-analysis for C-reactive protein levels and find that these methylation changes are likely the consequence of inflammation and could contribute to disease.We performed a multi-ethnic Epigenome Wide Association study on 22,774 individuals to describe the DNA methylation signature of chronic low-grade inflammation as measured by C-Reactive protein (CRP). We find 1,511 independent differentially methylated loci associated with CRP. These CpG sites show correlation structures across chromosomes, and are primarily situated in euchromatin, depleted in CpG islands. These genomic loci are predominantly situated in transcription factor binding sites and genomic enhancer regions. Mendelian randomization analysis suggests altered CpG methylation is a consequence of increased blood CRP levels. Mediation analysis reveals obesity and smoking as important underlying driving factors for changed CpG methylation. Finally, we find that an activated CpG signature significantly increases the risk for cardiometabolic diseases and COPD.Molecular Epidemiolog
