100 research outputs found

    Doped MXenes—A new paradigm in 2D systems: Synthesis, properties and applications

    Get PDF
    Since 2011, 2D transition metal carbides, carbonitrides and nitrides known as MXenes have gained huge attention due to their attractive chemical and electronic properties. The diverse functionalities of MXenes make them a promising candidate for multitude of applications. Recently, doping MXene with metallic and non-metallic elements has emerged as an exciting new approach to endow new properties to this 2D systems, opening a new paradigm of theoretical and experimental studies. In this review, we present a comprehensive overview on the recent progress in this emerging field of doped MXenes. We compare the different doping strategies; techniques used for their characterization and discuss the enhanced properties. The distinct advantages of doping in applications such as electrocatalysis, energy storage, photovoltaics, electronics, photonics, environmental remediation, sensors, and biomedical applications is elaborated. Additionally, theoretical developments in the field of electrocatalysis, energy storage, photovoltaics, and electronics are explored to provide key specific advantages of doping along with the underlying mechanisms. Lastly, we present the advantages and challenges of doped MXenes to take this thriving field forward

    Gene expression analysis of flax seed development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flax, <it>Linum usitatissimum </it>L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed.</p> <p>Results</p> <p>We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions <ext-link ext-link-id="LIBEST_026995" ext-link-type="gen">LIBEST_026995</ext-link> to <ext-link ext-link-id="LIBEST_027011" ext-link-type="gen">LIBEST_027011</ext-link>) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for <it>in silico </it>expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development.</p> <p>Conclusions</p> <p>We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise even low-expressed genes such as those encoding transcription factors. This has allowed us to delineate the spatio-temporal aspects of gene expression underlying the biosynthesis of a number of important seed constituents in flax. Flax belongs to a taxonomic group of diverse plants and the large sequence database will allow for evolutionary studies as well.</p

    Mycobacterial antigen driven activation of CD14++ CD16-monocytes is a predictor of tuberculosis-associated immune reconstitution inflammatory syndrome

    Get PDF
    Paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) is an aberrant inflammatory response occurring in a subset of TB-HIV co-infected patients initiating anti-retroviral therapy (ART). Here, we examined monocyte activation by prospectively quantitating pro-inflammatory plasma markers and monocyte subsets in TB-HIV co-infected patients from a South Indian cohort at baseline and following ART initiation at the time of IRIS, or at equivalent time points in non-IRIS controls. Pro-inflammatory biomarkers of innate and myeloid cell activation were increased in plasma of IRIS patients pre-ART and at the time of IRIS; this association was confirmed in a second cohort in South Africa. Increased expression of these markers correlated with elevated antigen load as measured by higher sputum culture grade and shorter duration of anti-TB therapy. Phenotypic analysis revealed the frequency of CD14++CD16− monocytes was an independent predictor of TB-IRIS, and was closely associated with plasma levels of CRP, TNF, IL-6 and tissue factor during IRIS. In addition, production of inflammatory cytokines by monocytes was higher in IRIS patients compared to controls pre-ART. These data point to a major role of mycobacterial antigen load and myeloid cell hyperactivation in the pathogenesis of TB-IRIS, and implicate monocytes and monocyte-derived cytokines as potential targets for TB-IRIS prevention or treatment

    Paradoxical tuberculosis immune reconstitution inflammatory syndrome (TB-IRIS) in HIV patients with culture confirmed pulmonary tuberculosis in India and the potential role of IL-6 in prediction

    Get PDF
    Background: The incidence, manifestations, outcome and clinical predictors of paradoxical TB-IRIS in patients with HIV and culture confirmed pulmonary tuberculosis (PTB) in India have not been studied prospectively. Methods: HIV+ patients with culture confirmed PTB started on anti-tuberculosis therapy (ATT) were followed prospectively after anti-retroviral therapy (ART) initiation. Established criteria for IRIS diagnosis were used including decline in plasma HIV RNA at IRIS event. Pre-ART plasma levels of interleukin (IL)-6 and C-reactive protein (CRP) were measured. Univariate and multivariate logistic regression models were used to evaluate associations between baseline variables and IRIS. Results: Of 57 patients enrolled, 48 had complete follow up data. Median ATT-ART interval was 28 days (interquartile range, IQR 14–47). IRIS events occurred in 26 patients (54.2%) at a median of 11 days (IQR: 7–16) after ART initiation. Corticosteroids were required for treatment of most IRIS events that resolved within a median of 13 days (IQR: 9–23). Two patients died due to CNS TB-IRIS. Lower CD4+ T-cell counts, higher plasma HIV RNA levels, lower CD4/CD8 ratio, lower hemoglobin, shorter ATT to ART interval, extra-pulmonary or miliary TB and higher plasma IL-6 and CRP levels at baseline were associated with paradoxical TB-IRIS in the univariate analysis. Shorter ATT to ART interval, lower hemoglobin and higher IL-6 and CRP levels remained significant in the multivariate analysis. Conclusion: Paradoxical TB–IRIS frequently complicates HIV-TB therapy in India. IL-6 and CRP may assist in predicting IRIS events and serve as potential targets for immune interventions

    Peroxisomal Alanine: Glyoxylate Aminotransferase AGT1 Is Indispensable for Appressorium Function of the Rice Blast Pathogen, Magnaporthe oryzae

    Get PDF
    The role of β-oxidation and the glyoxylate cycle in fungal pathogenesis is well documented. However, an ambiguity still remains over their interaction in peroxisomes to facilitate fungal pathogenicity and virulence. In this report, we characterize a gene encoding an alanine, glyoxylate aminotransferase 1 (AGT1) in Magnaporthe oryzae, the causative agent of rice blast disease, and demonstrate that AGT1 is required for pathogenicity of M. oryzae. Targeted deletion of AGT1 resulted in the failure of penetration via appressoria; therefore, mutants lacking the gene were unable to induce blast symptoms on the hosts rice and barley. This penetration failure may be associated with a disruption in lipid mobilization during conidial germination as turgor generation in the appressorium requires mobilization of lipid reserves from the conidium. Analysis of enhanced green fluorescent protein expression using the transcriptional and translational fusion with the AGT1 promoter and open reading frame, respectively, revealed that AGT1 expressed constitutively in all in vitro grown cell types and during in planta colonization, and localized in peroxisomes. Peroxisomal localization was further confirmed by colocalization with red fluorescent protein fused with the peroxisomal targeting signal 1. Surprisingly, conidia produced by the Δagt1 mutant were unable to form appressoria on artificial inductive surfaces, even after prolonged incubation. When supplemented with nicotinamide adenine dinucleotide (NAD+)+pyruvate, appressorium formation was restored on an artificial inductive surface. Taken together, our data indicate that AGT1-dependent pyruvate formation by transferring an amino group of alanine to glyoxylate, an intermediate of the glyoxylate cycle is required for lipid mobilization and utilization. This pyruvate can be converted to non-fermentable carbon sources, which may require reoxidation of NADH generated by the β-oxidation of fatty acids to NAD+ in peroxisomes. Therefore, it may provide a means to maintain redox homeostasis in appressoria
    corecore