6 research outputs found
Structural and Ultrastructural Aspects of Folliculogenesis in Didelphis albiventris, the South-American Opossum
The ovarian histology, the structural and the ultrastructural characteristics of the folliculogenesis in Didelphis albiventris were described in detail. Recent studies suggest that methatherian mammals have unusual reproductive cycle but there are few informations regarding the marsupials reproductive life. Despite of the opossum folliculogenesis pattern resembles methatherian and eutherian pattern in many aspects, the analysis shows some peculiar features of the oocyte structure and ultrastructure that make available new data on the reproductive biology of marsupials
Morphological changes in the fast vs slow fiber profiles of the urethras of diabetic pregnant rats
Background: This study was undertaken to test the hypothesis that diabetes and pregnancy detrimentally affect the normal function of urethral striated muscles in rats, providing a model for additional studies related to urinary incontinence. The aim of this study was to evaluate morphological alterations in the urethral striated muscles of diabetic pregnant rats. Materials and Methods: Twenty female Wistar rats were distributed into four experimental groups of five rats as follows: virgin, pregnant, diabetic virgin, and diabetic pregnant. Diabetes was induced using streptozotocin administration (40 mg/kg i.v.). The rats were lethally anesthetized, and the urethra and vagina were extracted as a unit. Cryostat sections (6 μm thick) were cut and stained with hematoxylin-eosin, and immunohistochemical procedures were performed and subjected to morphological and semi quantitative analysis. Results: The urethral striated muscle from the diabetic pregnant rats presented with the following variations: thinning and atrophy, disorganization and disruption associated with the colocalization of fast and slow fibers and a steady decrease in the proportion of fast vs slow fibers. Conclusion: Diabetes and pregnancy impair the urethral striated muscle and alter its fiber type distribution. © Copyright G. Marini et al., 2011