65 research outputs found

    Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries

    Get PDF
    We explore a newly proposed channel to create binary black holes of stellar origin. This scenario applies to massive, tight binaries where mixing induced by rotation and tides transports the products of hydrogen burning throughout the stellar envelopes. This slowly enriches the entire star with helium, preventing the build-up of an internal chemical gradient. The stars remain compact as they evolve nearly chemically homogeneously, eventually forming two black holes, which, we estimate, typically merge 4--11 Gyr after formation. Like other proposed channels, this evolutionary pathway suffers from significant theoretical uncertainties, but could be constrained in the near future by data from advanced ground-based gravitational-wave detectors. We perform Monte Carlo simulations of the expected merger rate over cosmic time to explore the implications and uncertainties. Our default model for this channel yields a local binary black hole merger rate of about 1010 Gpc3^{-3} yr1^{-1} at redshift z=0z=0, peaking at twice this rate at z=0.5z=0.5. This means that this channel is competitive, in terms of expected rates, with the conventional formation scenarios that involve a common-envelope phase during isolated binary evolution or dynamical interaction in a dense cluster. The events from this channel may be distinguished by the preference for nearly equal-mass components and high masses, with typical total masses between 50 and 110 M\textrm{M}_\odot. Unlike the conventional isolated binary evolution scenario that involves shrinkage of the orbit during a common-envelope phase, short time delays are unlikely for this channel, implying that we do not expect mergers at high redshift.Comment: Minor update to match the version published in MNRAS; 15 pages 10 figure

    Extreme isolation of WN3/O3 stars and implications for their evolutionary origin as the elusive stripped binaries

    Full text link
    Recent surveys of the Magellanic Clouds have revealed a subtype of Wolf-Rayet (WR) star with peculiar properties. WN3/O3 spectra exhibit both WR-like emission and O3 V-like absorption - but at lower luminosity than O3 V or WN stars. We examine the projected spatial distribution of WN3/O3 stars in the LMC as compared to O-type stars. Surprisingly, WN3/O3 stars are among the most isolated of all classes of massive stars; they have a distribution similar to red supergiants dominated by initial masses of 10-15 MM_{\odot}, and are far more dispersed than classical WR stars or luminous blue variables (LBVs). Their lack of association with clusters of O-type stars suggests strongly that WN3/O3 stars are not the descendants of single massive stars (30 MM_{\odot} or above). Instead, they are likely products of interacting binaries at lower initial mass (10-18 MM_{\odot}). Comparison with binary models suggests a probable origin with primaries in this mass range that were stripped of their H envelopes through non-conservative mass transfer by a low-mass secondary. We show that model spectra and positions on the Hertzsprung-Russell diagram for binary stripped stars are consistent with WN3/O3 stars. Monitoring radial velocities with high-resolution spectra can test for low-mass companions or runaway velocities. With lower initial mass and environments that avoid very massive stars, the WN3/O3 stars fit expectations for progenitors of Type Ib and possibly Type Ibn supernovae.Comment: Accepted for publication in MNRA

    New Constraints on the Star Formation History of the Star Cluster NGC 1856

    Get PDF
    We use the Wide Field Camera 3 onboard the Hubble Space Telescope to obtain deep, high-resolution photometry of the young (age ~ 300 Myr) star cluster NGC1856 in the Large Magellanic Cloud. We compare the observed colour-magnitude diagram (CMD), after having applied a correction for differential reddening, with Monte Carlo simulations of simple stellar populations (SSPs) of various ages. We find that the main sequence turn-off (MSTO) region is wider than that derived from the simulation of a single SSP. Using constraints based on the distribution of stars in the MSTO region and the red clump, we find that the CMD is best reproduced using a combination of two different SSPs with ages separated by 80 Myr (0.30 and 0.38 Gyr, respectively). However, we can not formally exclude that the width of the MSTO could be due to a range of stellar rotation velocities if the efficiency of rotational mixing is higher than typically assumed. Using a King-model fit to the surface number density profile in conjunction with dynamical evolution models, we determine the evolution of cluster mass and escape velocity from an age of 10 Myr to the present age, taking into account the possible effects of primordial mass segregation. We find that the cluster has an escape velocity Vesc ~ 17 km/s at an age of 10 Myr, and it remains high enough during a period of ~ 100 Myr to retain material ejected by slow winds of first-generation stars. Our results are consistent with the presence of an age spread in NGC1856, in contradiction to the results of Bastian & Silva-Villa (2013).Comment: 17 pages, 14 figures. Re-submitted to MNRAS after addressing all the comments by the refere

    A Systematic Survey of the Effects of Wind Mass Loss Algorithms on the Evolution of Single Massive Stars

    Get PDF
    Mass loss is a key uncertainty in the evolution of massive stars. Stellar evolution calculations must employ parametric algorithms for mass loss, and usually only include stellar winds. We carry out a parameter study of the effects of wind mass loss on massive star evolution using the open-source stellar evolution code MESA. We provide a systematic comparison of wind mass loss algorithms for solar-metallicity, nonrotating, single stars in the initial mass range of 1535M15-35\,M_\odot. We consider combinations drawn from two hot phase algorithms, three cool phase algorithms, and two Wolf-Rayet algorithms. We consider linear wind efficiency scale factors of 11, 0.330.33, and 0.10.1 to account for reductions in mass loss rates due to wind inhomogeneities. We find that the initial to final mass mapping for each zero-age main-sequence (ZAMS) mass has a 50%\sim 50\% uncertainty if all algorithm combinations and wind efficiencies are considered. The ad-hoc efficiency scale factor dominates this uncertainty. While the final total mass and internal structure of our models vary tremendously with mass loss treatment, final observable parameters are much less sensitive for ZAMS mass 30M\lesssim 30\,M_\odot. This indicates that uncertainty in wind mass loss does not negatively affect estimates of the ZAMS mass of most single-star supernova progenitors from pre-explosion observations. Furthermore, we show that the internal structure of presupernova stars is sensitive to variations in both main sequence and post main-sequence mass loss. We find that the compactness parameter ξM/R(M)\xi\propto M/R(M) varies by as much as 30%30\% for a given ZAMS mass evolved with different wind efficiencies and mass loss algorithm combinations. [abridged]Comment: Accepted for publication on A&A, 22 pages + 2 appendixes, 12 figures, online input parameters available at https://stellarcollapse.org/renzo2017 and data at https://zenodo.org/record/292924#.WK0q2tWi6W

    Fast rotating stars resulting from binary evolution will often appear to be single

    Full text link
    Rapidly rotating stars are readily produced in binary systems. An accreting star in a binary system can be spun up by mass accretion and quickly approach the break-up limit. Mergers between two stars in a binary are expected to result in massive, fast rotating stars. These rapid rotators may appear as Be or Oe stars or at low metallicity they may be progenitors of long gamma-ray bursts. Given the high frequency of massive stars in close binaries it seems likely that a large fraction of rapidly rotating stars result from binary interaction. It is not straightforward to distinguish a a fast rotator that was born as a rapidly rotating single star from a fast rotator that resulted from some kind of binary interaction. Rapidly rotating stars resulting from binary interaction will often appear to be single because the companion tends to be a low mass, low luminosity star in a wide orbit. Alternatively, they became single stars after a merger or disruption of the binary system during the supernova explosion of the primary. The absence of evidence for a companion does not guarantee that the system did not experience binary interaction in the past. If binary interaction is one of the main causes of high stellar rotation rates, the binary fraction is expected to be smaller among fast rotators. How this prediction depend on uncertainties in the physics of the binary interactions requires further investigation.Comment: 2 pages, 1 figure, to be published in the proceedings of IAU 272 "Active OB stars: structure, evolution, mass loss and critical limit", Paris 19-23 July 201

    Forming short-period Wolf-Rayet X-ray binaries and double black holes through stable mass transfer

    Get PDF
    We show that black-hole High-Mass X-ray Binaries (HMXBs) with O- or B-type donor stars and relatively short orbital periods, of order one week to several months may survive spiral in, to then form Wolf-Rayet (WR) X-ray binaries with orbital periods of order a day to a few days; while in systems where the compact star is a neutron star, HMXBs with these orbital periods never survive spiral-in. We therefore predict that WR X-ray binaries can only harbor black holes. The reason why black-hole HMXBs with these orbital periods may survive spiral in is: the combination of a radiative envelope of the donor star, and a high mass of the compact star. In this case, when the donor begins to overflow its Roche lobe, the systems are able to spiral in slowly with stable Roche-lobe overflow, as is shown by the system SS433. In this case the transferred mass is ejected from the vicinity of the compact star (so-called "isotropic re-emission" mass loss mode, or "SS433-like mass loss"), leading to gradual spiral-in. If the mass ratio of donor and black hole is >3.5>3.5, these systems will go into CE evolution and are less likely to survive. If they survive, they produce WR X-ray binaries with orbital periods of a few hours to one day. Several of the well-known WR+O binaries in our Galaxy and the Magellanic Clouds, with orbital periods in the range between a week and several months, are expected to evolve into close WR-Black-Hole binaries,which may later produce close double black holes. The galactic formation rate of double black holes resulting from such systems is still uncertain, as it depends on several poorly known factors in this evolutionary picture. It might possibly be as high as 105\sim 10^{-5} per year.Comment: MNRAS in pres

    Constraints on the Binary Companion to the SN Ic 1994I Progenitor

    Get PDF
    Core-collapse supernovae (SNe), which mark the deaths of massive stars, are among the most powerful explosions in the universe and are responsible, e.g., for a predominant synthesis of chemical elements in their host galaxies. The majority of massive stars are thought to be born in close binary systems. To date, putative binary companions to the progenitors of SNe may have been detected in only two cases, SNe 1993J and 2011dh. We report on the search for a companion of the progenitor of the Type Ic SN 1994I, long considered to have been the result of binary interaction. Twenty years after explosion, we used the Hubble Space Telescope to observe the SN site in the ultraviolet (F275W and F336W bands), resulting in deep upper limits on the expected companion: F275W > 26.1 mag and F336W > 24.7 mag. These allow us to exclude the presence of a main sequence companion with a mass ≳ 10 M_⊙. Through comparison with theoretical simulations of possible progenitor populations, we show that the upper limits to a companion detection exclude interacting binaries with semi-conservative (late Case A or early Case B) mass transfer. These limits tend to favor systems with non-conservative, late Case B mass transfer with intermediate initial orbital periods and mass ratios. The most likely mass range for a putative main sequence companion would be ~5–12 M_⊙, the upper end of which corresponds to the inferred upper detection limit

    Formation of the first three gravitational-wave observations through isolated binary evolution

    Get PDF
    During its first 4 months of taking data, Advanced LIGO has detected gravitational waves from two binary black hole mergers, GW150914 and GW151226, along with the statistically less significant binary black hole merger candidate LVT151012. We use our rapid binary population synthesis code COMPAS to show that all three events can be explained by a single evolutionary channel -- classical isolated binary evolution via mass transfer including a common envelope phase. We show all three events could have formed in low-metallicity environments (Z = 0.001) from progenitor binaries with typical total masses 160M\gtrsim 160 M_\odot, 60M\gtrsim 60 M_\odot and 90M\gtrsim 90 M_\odot, for GW150914, GW151226, and LVT151012, respectively.Comment: Published in Nature Communication
    corecore