24 research outputs found

    HDAC3 is essential for Human Leukemic Cell Growth and the Expression of β-catenin, MYC, and WT1

    Get PDF
    Therapy of acute myeloid leukemia (AML) is unsatisfactory. Histone deacetylase inhibitors (HDACi) are active against leukemic cells in vitro and in vivo. Clinical data suggest further testing of such epigenetic drugs and to identify mechanisms and markers for their efficacy. Primary and permanent AML cells were screened for viability, replication stress/DNA damage, and regrowth capacities after single exposures to the clinically used pan-HDACi panobinostat (LBH589), the class I HDACi entinostat/romidepsin (MS-275/FK228), the HDAC3 inhibitor RGFP966, the HDAC6 inhibitor marbostat-100, the non-steroidal anti-inflammatory drug (NSAID) indomethacin, and the replication stress inducer hydroxyurea (HU). Immunoblotting was used to test if HDACi modulate the leukemia-associated transcription factors beta-catenin, Wilms tumor (WT1), and myelocytomatosis oncogene (MYC). RNAi was used to delineate how these factors interact. We show that LBH589, MS-275, FK228, RGFP966, and HU induce apoptosis, replication stress/DNA damage, and apoptotic fragmentation of beta-catenin. Indomethacin destabilizes beta-catenin and potentiates anti-proliferative effects of HDACi. HDACi attenuate WT1 and MYC caspase-dependently and -independently. Genetic experiments reveal a cross-regulation between MYC and WT1 and a regulation of beta-catenin by WT1. In conclusion, reduced levels of beta-catenin, MYC, and WT1 are molecular markers for the efficacy of HDACi. HDAC3 inhibition induces apoptosis and disrupts tumor-associated protein expression

    Inhibitors of class I HDACs and of FLT3 combine synergistically against leukemia cells with mutant FLT3

    Get PDF
    Acute myeloid leukemia (AML) with mutations in the FMS-like tyrosine kinase (FLT3) is a clinically unresolved problem. AML cells frequently have a dysregulated expression and activity of epigenetic modulators of the histone deacetylase (HDAC) family. Therefore, we tested whether a combined inhibition of mutant FLT3 and class I HDACs is effective against AML cells. Low nanomolar doses of the FLT3 inhibitor (FLT3i) AC220 and an inhibition of class I HDACs with nanomolar concentrations of FK228 or micromolar doses of the HDAC3 specific agent RGFP966 synergistically induce apoptosis of AML cells that carry hyperactive FLT3 with an internal tandem duplication (FLT3-ITD). This does not occur in leukemic cells with wild-type FLT3 and without FLT3, suggesting a preferential toxicity of this combination against cells with mutant FLT3. Moreover, nanomolar doses of the new FLT3i marbotinib combine favorably with FK228 against leukemic cells with FLT3-ITD. The combinatorial treatments potentiated their suppressive effects on the tyrosine phosphorylation and stability of FLT3-ITD and its downstream signaling to the kinases ERK1/ERK2 and the inducible transcription factor STAT5. The beneficial pro-apoptotic effects of FLT3i and HDACi against leukemic cells with mutant FLT3 are associated with dose- and drug-dependent alterations of cell cycle distribution and DNA damage. This is linked to a modulation of the tumor-suppressive transcription factor p53 and its target cyclin-dependent kinase inhibitor p21. While HDACi induce p21, AC220 suppresses the expression of p53 and p21. Furthermore, we show that both FLT3-ITD and class I HDAC activity promote the expression of the checkpoint kinases CHK1 and WEE1, thymidylate synthase, and the DNA repair protein RAD51 in leukemic cells. A genetic depletion of HDAC3 attenuates the expression of such proteins. Thus, class I HDACs and hyperactive FLT3 appear to be valid targets in AML cells with mutant FLT3

    Enantioselective synthesis and biological investigation of tetrahydro‐β‐carboline‐based HDAC6 inhibitors with improved solubility

    No full text
    Aberrant epigenetic changes in DNA methylation and histone modification by acetylation or deacetylation regulate the pathogenesis of many diseases. Especially selective inhibitors are getting more and more attention. We recently reported on a new class of potent and selective anti-inflammatory and antirheumatic histone deacetylase 6 (HDAC6) inhibitors (e.g., Marbostat-100). The attachment of a morpholinoethoxy part to the head group dramatically enhances the solubility, in particular the solubility in aqueous solutions, of the lead compound Marbostat-100. Here, we present the enantioselective synthesis of small-molecule compounds based on the tetrahydro-beta-carboline core system with improved solubility, and the influence of the stereochemistry on the biological activity. The enantiomers were synthesized in good enantiomeric excess (ee) purity and were potent and selective HDAC6 inhibitors, whereas the S-derivative S-21 is clearly the eutomer. The potency of our selective HDAC6 inhibitors is demonstrated by K-i values in the range of 0.5-2 nM toward HDAC6, and the selectivity was proved in cellular assays by Western blot analysis taking ac-tubulin as surrogate parameter

    High-pressure flow reactor designed for an ultrahigh vacuum analysis system

    No full text
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    UV/Vis and fluorescence study on anthralin and its alkylated derivatives

    No full text
    Anthralin 1 and some of its C-10 or O-alkylated derivatives were investigated by UV/VIS- and fluorescence spectroscopy in different solvents and buffer systems, respectively. The effects of substituents on the formation of anthralin anion as well as the constitution of the resulting anions confirm that C-H acidity at position 10 is necessary for the formation of a fully aromatic anionic form. It is concluded that the resulting anion 1a is the pharmacologically active species of the antipsoriatic anthralin. Tautomerism of the neutral molecule is not observable

    On the Stereochemistry of Vincetene

    No full text

    Inhibition of PDGFR tyrosine kinase activity by a series of novel N-(3-(4-(pyridin-3-yl)-1H-imidazol-2-ylamino)phenyl)amides: a SAR study on the bioisosterism of pyrimidine and imidazole

    No full text
    A series of N-(3-(4-(pyridin-3-yl)-1H-imidazol-2-ylamino)phenyl)amides were synthesized and tested for inhibition of PDGFR and FLT3 autophosphorylation. The novel N-(3-(4-(pyridin-3-yl)-1H-imidazol-2-ylamino)phenyl)amides, obtained by replacement of the pyrimidine system in Imatinib (1) with an imidazole ring, exhibit potent inhibitory activity on PDGFR, similar to the parent compound (IC(50) (9e)=0.2 microM; IC(50) Imatinib (1)=0.3 microM). Selectivity hereby seems to be conserved, as shown by the lack of activity on FLT3, a closely related class III receptor tyrosine kinase, which is not affected by the parent compound Imatinib
    corecore