1,250 research outputs found

    Flow Visualization Studies on Drag-Reducing Turbulent Flows

    Get PDF
    Flow visualisation studies in a square duct of internal dimensions 44.5 x 44.5 mm are reported. The flow marker is a stream of opaque white dye, released from a downstream facing stationary tube, and it is photographed through the plexiglass wall of the duct. The point of dye release can be traversed in a direction perpendicular to the duct wall and three locations are investigated, two in the core of the flow and one in the near- wall region. By using Is exposure times photographs are obtained of a dye dispersion cone and the cone angle is measured and related to the turbulence properties of the flow. Using water as the solvent various concentrations of the highly effective drag reducing polymer Polyox WSR-301 are explored and relationships obtained between cone angle and injection location, Reynolds number and drag reduction. The importance of turbulence suppression in the near-wall region of the flow is demonstrated to be closely linked with the drag reduction mechanism

    Arguments en faveur d'une modification du génome (introgression) du parasite humain Schistosoma haematobium par des gènes de S. bovis, au Niger

    Get PDF
    La caractérisation de schistosomes par la morphologie des oeufs intra-utérins des vers femelles et l'analyse des phénotypes des parasites observés pour la phosphatase acide après séparation électrophorétique suggère la présence de gènes de #S. bovis, parasite du bétail domestique, chez les schistosomoses issus de l'homme dans la région est du Niger et présumés appartenir à #S. haematobium. Cette introgression naturelle pourrait également implique #S. curassoni$, un autre schistosome du bétail sympatrique des 2 autres espèces dans cette région. (Résumé d'auteur

    Effect of dislocations on charge carrier mobility-lifetime product in synthetic single crystal diamond

    Get PDF
    The authors report correlations between variations in charge transport of electrons and holes in synthetic single crystal diamond and the presence of nitrogen impurities and dislocations. The spatial distribution of these defects was imaged using their characteristic luminescence emission and compared with maps of carrier drift length measured by ion beam induced charge imaging. The images indicate a reduction of electron and hole mobility-lifetime product due to nitrogen impurities and dislocations. Very good charge transport is achieved in selected regions where the dislocation density is minimal

    Sensitive X-ray Detectors Synthesised from CsPbBr3

    Get PDF
    The materials used in detection of high energy photons are of primary importance in the construction of efficient, cost effective and sensitive detectors. Current research into Perovskites for solar cell technology has stimulated interest in their potential alternative uses, one of which is in direct photon conversion radiation detectors, owed primarily to their high-Z elemental composition twinned with exceptional charge carrier transport properties. Here, the Perovskite CsPbBr 3 has been synthesised through solution growth. The raw CsPbBr 3 was a granular powder which was formed into disks of 8 mm diameter and 1-2 mm thickness by two methods: 1). the powders were pressed into pellets using a hydraulic press or 2). sealed in a quartz ampoule under vacuum and then melted and quenched to form a polycrystalline solid which was cut to size. Metallic contacts were deposited on the front and back faces to permit charge collection. The results from the pressed devices are promising, particularly given that the production method is cost effective, repeatable and scalable. The solid-from-melt devices show similar performance but further development is required to optimise the production method

    Laser Stabilization at 1536 nm Using Regenerative Spectral Hole Burning

    Get PDF
    Laser frequency stabilization giving a 500-Hz Allan deviation for a 2-ms integration time with drift reduced to 7 kHz/min over several minutes was achieved at 1536 nm in the optical communication band. A continuously regenerated spectral hole in the inhomogeneously broadened 4I15/2(1)!4I13/2(1) optical absorption of an Er31:Y2SiO5 crystal was used as the short-term frequency reference, while a variation on the locking technique allowed simultaneous use of the inhomogeneously broadened absorption line as a long-term reference. The reported frequency stability was achieved without vibration isolation. Spectral hole burning frequency stabilization provides ideal laser sources for high-resolution spectroscopy, real-time optical signal processing, and a range of applications requiring ultra-narrow-band light sources or coherent detection; the time scale for stability and the compatibility with spectral hole burning devices make this technique complementary to other frequency references for laser stabilization

    Neutron/gamma pulse shape discrimination in EJ-299-34 at high flux

    Get PDF
    The effect of scintillator geometry on the quality of neutron/γ pulse shape discrimination (PSD) in EJ-299 plastic scintillator, using a digital charge integration PSD algorithm has been studied. It is shown that the PSD Figure of Merit (FOM) reduces as the geometry of the scintillator moves from a cube-like shape towards a flat panel shape. The PSD performance in this material at high flux irradiation is investigated with performance deteriorating at rates of ∼107 photons/s. The use of EJ-299 for security applications, with a focus on active interrogation environments is explored in conjunction with a system capable of neutron/γ separation and localisation

    RadICAL stack: A localisation method for dynamic gamma/neutron fields

    Get PDF
    A variation of the RadICAL (Radiation Imaging Cylinder Activity Locator) system capable of operating in a dynamic environment, such as that created by active interrogation techniques, has been developed. RadICAL is a novel method for locating a radiological source using a rotating detector element. The detector geometry is that of a thin sheet and is rotated to present a constantly changing surface area to the source; it therefore generates a characteristic temporal response which can be used to determine the source direction. The time required to determine the direction of a source make it unsuitable for dynamic environments and so an alternative method is presented that uses a stack of identical scintillator slabs positioned at fixed horizontal angles around a central axis. By comparing count rates from each slab to a standard response curve, using a specially developed algorithm, the direction of a source can be determined without the need to rotate the detector. EJ-299-33 plastic scintillator was used to allow detection of separate neutron and gamma events in a mixed field through pulse shape discrimination. A four element detector was built and shown to achieve a positional accuracy of approximately 4.4 degrees when exposed to a 1.44MBq 137 Cs source at distances of up to 2m. The same detector was used to discriminate separate neutron and gamma events in a mixed field, which allows for the possibility of locating a neutron source within a gamma rich environment

    Compton double-to-single ionization ratio of helium at 57 keV

    Get PDF
    We have measured the Compton double-to-single ionization ratio of helium using an ion time-of-flight spectrometer along with monochromatized synchrotron radiation of 57 keV. This photon energy is high and probes the Compton ionization alone, since the photoionization makes only a negligible contribution to the total cross section. Comparing our result, which is (1.25±0.3)%, with theoretical calculations and measurements at lower energies shows that this energy is most likely still not high enough to confirm the value of the asymptotic high-energy limit experimentally
    corecore