6 research outputs found

    Reconstruction of the low-mass dielectron signal in 1.23A GeV Au+Au collisions

    No full text
    QCD matter is expected to exist in different phases, when heated to high temperatures and getting highly compressed. Each phase could be characterized by distinct properties. A way to access extreme phases of matter in the laboratory are heavy-ion collisions at (ultra-)relativistic energies. During the collision, the temperature and density is evolving and reaches a maximum temperature and density far beyond the ground state of matter. The matter properties depend on the incident collision energy. Typically, a collision is separated into three collisions stages, namely first chance collisions (I), hot and dense stage (II) and freeze-out stage (III). Out of those, the second one is of major interest, since the extreme states of matter are generated within. For this reason, the most prominent change of the hadrons is expected to appear there in. Those changes are caused by i.e. modification of the hadronic spectral function. However, to retrieve such information is complicated. Hadrons are strongly interacting particles and therefore, carry little information about the hot and dense stage. For that purpose, decays of hadrons (low-mass vector mesons) to e+e- pairs via a virtual photon, so-called dielectrons, are an ideal probe. Electrons and positrons do not interact strongly and transport the information about the hot and dense stage nearly undisturbed to the detector. Unfortunately, the production of dielectrons is suppressed by a branching ratio of ≈ 10^(-5) and requires a precise lepton identification. Nonetheless, previous experiments have extracted a dilepton signal and observed in the low-mass range an excess over the hadronic cocktail. Latter one is expected to be caused by thermal radiation induced by the medium. Up to now, experiments conducted dilepton measurements with a focus on larger collision energies and large collision systems. Measurements of dielectrons at collision energies of around 1-2A GeV were only conducted for small and medium size collision systems. HADES continued the systematic studies by a measurement of Au+Au collisions at 1.23A GeV.The detection of dielectrons requires detectors that handle high data rates and specific detectors for a high purity lepton identification. In HADES, the strongest separation of electrons or positrons from the hadronic background is provided by a ring imaging Cherenkov detector (RICH). Its electron identification is based on Cherenkov photons, that are emitted in ring like patterns. In this work a new approach, using the time-of-flight information to preselect electrons and the reconstructed particle trajectory to estimate ring positions, is utilized to improve the lepton identification. The concept of the so-called backtracking algorithm will be explained and applied to e+e- identification in Au+Au collisions. The whole analysis chain comprises single lepton identification, pair reconstruction and correction for efficiency and acceptance losses. The final pair spectra will be presented in form of their invariant mass, pt, mt and helicity distributions. Subsequently, transport model calculations as well as results from the recently developed coarse-grained transport approach will be compared to the dielectron spectra. Moreover, the centrality dependence of the excess yield and true (not "blue-shifted") temperature of the fireball will be presented. The results will be put in context to measurements of lighter collisions systems and at higher energies

    Measurement of the quasi free np → npπ+π− and np → ppπ−π0 reactions at 1.25 GeV with HADES

    No full text
    We present the results of two-pion production in tagged quasi-free np collisions at a deutron incident beam energy of 1.25 GeV/c measured with the High-Acceptance Di-Electron Spectrometer (HADES) installed at GSI. The specific acceptance of HADES allowed for the first time to obtain high-precision data on π+π− and π−π0 production in np collisions in a region corresponding to large transverse momenta of the secondary particles. The obtained differential cross section data provide strong constraints on the production mechanisms and on the various baryon resonance contributions (∆∆, N(1440), N(1520), ∆(1600)). The invariant mass and angular distributions from the np → npπ+π −and np → ppπ−π0 reactions are compared with different theoretical model predictions

    Highlights of resonance measurements with HADES

    No full text
    his contribution aims to give a basic overview of the latest results regarding the production of resonances in different collision systems. The results were extracted from experimental data collected with HADES that is a multipurpose detector located at the GSI Helmholtzzentrum, Darmstadt. The main points discussed here are: the properties of the strange resonances Λ(1405) and Σ(1385), the role of Δ’s as a source of pions in the final state, the production dynamics reflected in form of differential cross sections, and the role of the ϕ meson as a source for K− particles

    Investigating hadronic resonances in pp interactions with HADES

    No full text
    n this paper we report on the investigation of baryonic resonance production in proton-proton collisions at the kinetic energies of 1.25 GeV and 3.5 GeV, based on data measured with HADES. Exclusive channels npπ+ and ppπ0 as well as ppe+e− were studied simultaneously in the framework of a one-boson exchange model. The resonance cross sections were determined from the one-pion channels for Δ(1232) and N(1440) (1.25 GeV) as well as further Δ and N* resonances up to 2 GeV/c2 for the 3.5 GeV data. The data at 1.25 GeV energy were also analysed within the framework of the partial wave analysis together with the set of several other measurements at lower energies. The obtained solutions provided the evolution of resonance production with the beam energy, showing a sizeable non-resonant contribution but with still dominating contribution of Δ(1232)P33. In the case of 3.5 GeV data, the study of the ppe+e− channel gave the insight on the Dalitz decays of the baryon resonances and, in particular, on the electromagnetic transition form-factors in the time-like region. We show that the assumption of a constant electromagnetic transition form-factors leads to underestimation of the yield in the dielectron invariant mass spectrum below the vector mesons pole. On the other hand, a comparison with various transport models shows the important role of intermediate ρ production, though with a large model dependency. The exclusive channels analysis done by the HADES collaboration provides new stringent restrictions on the parameterizations used in the models

    HADES results in elementary reactions

    No full text
    Recent results obtained with the HADES experimental set-up at GSI are presented with a focus on dielectron production and strangeness in pp and quasi-free np reactions. Perspectives related to the very recent experiment using the pion beam at GSI are also discussed

    Correlated pion-proton pair emission off hot and dense QCD matter

    No full text
    In this letter we report the first multi-differential measurement of correlated pion-proton pairs from 2 billion Au+Au collisions at sNN=2.42 GeV collected with HADES. In this energy regime the population of Δ(1232) resonances plays an important role in the way energy is distributed between intrinsic excitation energy and kinetic energy of the hadrons in the fireball. The triple differential d3N/dMπ±pdpTdy distributions of correlated π±p pairs have been determined by subtracting the πp combinatorial background using an iterative method. The invariant-mass distributions in the Δ(1232) mass region show strong deviations from a Breit-Wigner function with vacuum width and mass. The yield of correlated pion-proton pairs exhibits a complex isospin, rapidity and transverse-momentum dependence. In the invariant mass range 1.1<Minv(GeV/c2)<1.4, the yield is found to be similar for π+p and π−p pairs, and to follow a power law 〈Apart〉α, where 〈Apart〉 is the mean number of participating nucleons. The exponent α depends strongly on the pair transverse momentum (pT) while its pT-integrated and charge-averaged value is α=1.5±0.08st±0.2sy
    corecore