47 research outputs found

    The use of a direct manufacturing prosthetic socket system in a rural community in South Africa: a pilot study and lessons for future research

    Get PDF
    BACKGROUND: Challenges exist with the provision of appropriate mobility assistive devices in rural areas. The use of the direct manufacturing prosthetic socket system is a possible solution to these challenges. OBJECTIVES: The objective of this study was to test and explore the clients’ perspectives with the application of this device. Study design: Within a mixed-methods approach, a longitudinal sequential explanatory design was applied. METHODS: The Orthotic and Prosthetic User’s Survey was administered to explore the use of the direct manufacturing prosthetic socket system in terms of function, health-related quality of life and client satisfaction. A conveniently selected sample of 21 individuals who suffered a unilateral trans-tibial amputation was included. Data were collected at 1, 3 and 6 months post fitting, and two focus group discussions were also administered. RESULTS: Of the 21 participants recruited, 11 returned for follow up. Although participants reported favourably about the prosthesis, their scores were generally worse than the norms with regard to function and quality of life. Participants highlighted the need for improvement in the cosmetic appearance of the prosthesis. CONCLUSION: The direct manufacturing prosthetic socket system could be considered as an alternative technique of socket manufacturing for individuals living in rural areas due to the shorter manufacture time and promising initial results, but further research on this topic with a bigger sample is recommended.ISI & Scopu

    A Systematic Review of Dynamometry and its Role in Hand Trauma Assessment

    Get PDF
    The dynamometer was developed by American neurologists and came into general use in the late 19th century. It is still used in various ways as a diagnostic and prognostic tool in clinical settings. In this systematic review we assessed in detail the different uses of dynamometry, its reliability, different dynamometers used and the influence of rater experience by bringing together and evaluating all published literature in this field. It was found that dynamometry is applied in a wide range of medical conditions. Furthermore, the great majority of studies reported acceptable to high reliability of dynamometry. Jamar mechanical dynamometer was used most often in the studies reviewed. There were mixed results concerning the effect of rater experience. The factors influencing the results of dynamometry were identified as age, gender, body weight, grip strength, BMI, non/dominant hand, assessing upper/lower limbs, rater and patient’s strength and the distance from the joint where the dynamometer is placed. This review provides an understanding of the relevance and significance of dynamometry which should serve as a starting point to guide its use in hand trauma assessment. On the basis of our findings, we suggest that hand dynamometry has a great potential, and could be used more often in clinical practice

    Pulsations in main sequence OBAF-type stars

    Get PDF
    CONTEXT: The third Gaia data release provides photometric time series covering 34 months for about 10 million stars. For many of those stars, a characterisation in Fourier space and their variability classification are also provided. This paper focuses on intermediate- to high-mass (IHM) main sequence pulsators (M ≥  1.3 M⊙) of spectral types O, B, A, or F, known as β Cep, slowly pulsating B (SPB), δ Sct, and γ Dor stars. These stars are often multi-periodic and display low amplitudes, making them challenging targets to analyse with sparse time series. AIMS: We investigate the extent to which the sparse Gaia DR3 data can be used to detect OBAF-type pulsators and discriminate them from other types of variables. We aim to probe the empirical instability strips and compare them with theoretical predictions. The most populated variability class is that of the δ Sct variables. For these stars, we aim to confirm their empirical period-luminosity (PL) relation, and verify the relation between their oscillation amplitude and rotation. METHODS: All datasets used in this analysis are part of the Gaia DR3 data release. The photometric time series were used to perform a Fourier analysis, while the global astrophysical parameters necessary for the empirical instability strips were taken from the Gaia DR3 gspphot tables, and the v sin i data were taken from the Gaia DR3 esphs tables. The δ Sct PL relation was derived using the same photometric parallax method as the one recently used to establish the PL relation for classical Cepheids using Gaia data. RESULTS: We show that for nearby OBAF-type pulsators, the Gaia DR3 data are precise and accurate enough to pinpoint them in the Hertzsprung-Russell (HR) diagram. We find empirical instability strips covering broader regions than theoretically predicted. In particular, our study reveals the presence of fast rotating gravity-mode pulsators outside the strips, as well as the co-existence of rotationally modulated variables inside the strips as reported before in the literature. We derive an extensive period–luminosity relation for δ Sct stars and provide evidence that the relation features different regimes depending on the oscillation period. We demonstrate how stellar rotation attenuates the amplitude of the dominant oscillation mode of δ Sct stars. CONCLUSIONS: The Gaia DR3 time-series photometry already allows for the detection of the dominant (non-)radial oscillation mode in about 100 000 intermediate- and high-mass dwarfs across the entire sky. This detection capability will increase as the time series becomes longer, allowing the additional delivery of frequencies and amplitudes of secondary pulsation modes

    Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way

    Get PDF
    AIMS: The goal of this paper is to demonstrate the outstanding quality of the second data release of the Gaia mission and its power for constraining many different aspects of the dynamics of the satellites of the Milky Way. We focus here on determining the proper motions of 75 Galactic globular clusters, nine dwarf spheroidal galaxies, one ultra-faint system, and the Large and Small Magellanic Clouds. METHODS: Using data extracted from the Gaia archive, we derived the proper motions and parallaxes for these systems, as well as their uncertainties. We demonstrate that the errors, statistical and systematic, are relatively well understood. We integrated the orbits of these objects in three different Galactic potentials, and characterised their properties. We present the derived proper motions, space velocities, and characteristic orbital parameters in various tables to facilitate their use by the astronomical community. RESULTS: Our limited and straightforward analyses have allowed us for example to (i) determine absolute and very precise proper motions for globular clusters; (ii) detect clear rotation signatures in the proper motions of at least five globular clusters; (iii) show that the satellites of the Milky Way are all on high-inclination orbits, but that they do not share a single plane of motion; (iv) derive a lower limit for the mass of the Milky Way of 9.1{_₂.₆⁺⁶·²} x 10¹¹ M⊙ based on the assumption that the Leo I dwarf spheroidal is bound; (v) derive a rotation curve for the Large Magellanic Cloud based solely on proper motions that is competitive with line-of-sight velocity curves, now using many orders of magnitude more sources; and (vi) unveil the dynamical effect of the bar on the motions of stars in the Large Magellanic Cloud. CONCLUSIONS: All these results highlight the incredible power of the Gaia astrometric mission, and in particular of its second data release

    Gaia Data Release 2 Variable stars in the colour-absolute magnitude diagram

    Get PDF
    Context. The ESA Gaia mission provides a unique time-domain survey for more than 1.6 billion sources with G ≲ 21 mag. Aims. We showcase stellar variability in the Galactic colour-absolute magnitude diagram (CaMD). We focus on pulsating, eruptive, and cataclysmic variables, as well as on stars that exhibit variability that is due to rotation and eclipses. Methods. We describe the locations of variable star classes, variable object fractions, and typical variability amplitudes throughout the CaMD and show how variability-related changes in colour and brightness induce “motions”. To do this, we use 22 months of calibrated photometric, spectro-photometric, and astrometric Gaia data of stars with a significant parallax. To ensure that a large variety of variable star classes populate the CaMD, we crossmatched Gaia sources with known variable stars. We also used the statistics and variability detection modules of the Gaia variability pipeline. Corrections for interstellar extinction are not implemented in this article. Results. Gaia enables the first investigation of Galactic variable star populations in the CaMD on a similar, if not larger, scale as was previously done in the Magellanic Clouds. Although the observed colours are not corrected for reddening, distinct regions are visible in which variable stars occur. We determine variable star fractions to within the current detection thresholds of Gaia. Finally, we report the most complete description of variability-induced motion within the CaMD to date. Conclusions. Gaia enables novel insights into variability phenomena for an unprecedented number of stars, which will benefit the understanding of stellar astrophysics. The CaMD of Galactic variable stars provides crucial information on physical origins of variability in a way that has previously only been accessible for Galactic star clusters or external galaxies. Future Gaia data releases will enable significant improvements over this preview by providing longer time series, more accurate astrometry, and additional data types (time series BP and RP spectra, RVS spectra, and radial velocities), all for much larger samples of stars

    Recurrence of Dupuytren's contracture: A consensus-based definition

    No full text
    Purpose One of the major determinants of Dupyutren disease (DD) treatment efficacy is recurrence of the contracture. Unfortunately, lack of agreement in the literature on what constitutes recurrence makes it nearly impossible to compare the multiple treatments alternatives available today. The aim of this study is to bring an unbiased pool of experts to agree upon what would be considered a recurrence of DD after treatment; and from that consensus establish a much-needed definition for DD recurrence. Methods To reach an expert consensus on the definition of recurrence we used the Delphi method and invited 43 Dupuytren's research and treatment experts from 10 countries to participate by answering a series of questionnaire rounds. After each round the answers were analyzed and the experts received a feedback report with another questionnaire round to further hone in of the definition. We defined consensus when at least 70% of the experts agreed on a topic. Results Twenty-one experts agreed to participate in this study. After four consensus rounds, we agreed that DD recurrence should be defined as "more than 20 degrees of contracture recurrence in any treated joint at one year post-treatment compared to six weeks post-treatment". In addition, "recurrence should be reported individually for every treated joint" and afterwards measurements should be repeated and reported yearly. Conclusion This study provides the most comprehensive to date definition of what should be considered recurrence of DD. These standardized criteria should allow us to better evaluate the many treatment alternatives.</p

    Functional outcome following headless compression screw fixation for hamate fractures

    No full text
    corecore