3,538 research outputs found
Strong light-matter coupling in bulk GaN-microcavities with double dielectric mirrors fabricated by two different methods
Two routes for the fabrication of bulk GaN microcavities embedded between two dielectric mirrors are described, and the optical properties of the microcavities thus obtained are compared. In both cases, the GaN active layer is grown by molecular beam epitaxy on (111) Si, allowing use of selective etching to remove the substrate. In the first case, a three period Al0.2Ga0.8N / AlN Bragg mirror followed by a lambda/2 GaN cavity are grown directly on the Si. In the second case, a crack-free 2,mu m thick GaN layer is grown, and progressively thinned to a final thickness of lambda. Both devices work in the strong coupling regime at low temperature, as evidenced by angle-dependent reflectivity or transmission experiments. However, strong light-matter coupling in emission at room temperature is observed only for the second one. This is related to the poor optoelectronic quality of the active layer of the first device, due to its growth only 250 nm above the Si substrate and its related high defect density. The reflectivity spectra of the microcavities are well accounted for by using transfer matrix calculations. (C) 2010 American Institute of Physics. [doi:10.1063/1.3477450
From Analysis Model to Software Architecture: a PIM2PIM Mapping.
To our knowledge, no current software development methodology explicitly describes how to transit from the analysis model to the software architecture of the application. This paper presents a method to derive the
software architecture of a system from its analysis model. To do this, we are going to use MDA. Both the analysis model and the architectural model are PIMs described with UML 2. The model type mapping designed consists of
several rules (expressed using OCL and natural language) that, when applied to the analysis artifacts, generate the software architecture of the application.
Specifically the rules act on elements of the UML 2 metamodel (metamodel mapping). We have developed a tool (using Smalltalk) that permits the automatic application of these rules to an analysis model defined in RoseTM to
generate the application architecture expressed in the architectural style C2
Robust Magnetic Polarons in Type-II (Zn,Mn)Te Quantum Dots
We present evidence of magnetic ordering in type-II (Zn, Mn) Te quantum dots.
This ordering is attributed to the formation of bound magnetic polarons caused
by the exchange interaction between the strongly localized holes and Mn within
the dots. In our photoluminescence studies, the magnetic polarons are detected
at temperatures up to ~ 200 K, with a binding energy of ~ 40 meV. In addition,
these dots display an unusually small Zeeman shift with applied field (2 meV at
10 T). This behavior is explained by a small and weakly temperature-dependent
magnetic susceptibility due to anti-ferromagnetic coupling of the Mn spins
Influence of the mirrors on the strong coupling regime in planar GaN microcavities
The optical properties of bulk GaN microcavities working in the
strong light-matter coupling regime are investigated using angle-dependent
reflectivity and photoluminescence at 5 K and 300 K. The structures have an
AlGaN/AlN distributed Bragg reflector as the bottom mirror and
either an aluminium mirror or a dielectric Bragg mirror as the top one. First,
the influence of the number of pairs of the bottom mirror on the Rabi splitting
is studied. The increase of the mirror penetration depth is correlated with a
reduction of the Rabi splitting. Second, the emission of the lower polariton
branch is observed at low temperature in a microcavity containing two Bragg
mirrors and exibiting a quality factor of 190. Our simulations using the
transfer-matrix formalism, taking into account the real structure of the
samples investigated are in good agreement with experimental results.Comment: published versio
Minimum convex hull mass estimations of complete mounted skeletons
Body mass is a critical parameter used to constrain biomechanical and physiological traits of organisms. Volumetric methods are becoming more common as techniques for estimating the body masses of fossil vertebrates. However, they are often accused of excessive subjective input when estimating the thickness of missing soft tissue. Here, we demonstrate an alternative approach where a minimum convex hull is derived mathematically from the point cloud generated by laser-scanning mounted skeletons. This has the advantage of requiring minimal user intervention and is thus more objective and far quicker. We test this method on 14 relatively large-bodied mammalian skeletons and demonstrate that it consistently underestimates body mass by 21 per cent with minimal scatter around the regression line. We therefore suggest that it is a robust method of estimating body mass where a mounted skeletal reconstruction is available and demonstrate its usage to predict the body mass of one of the largest, relatively complete sauropod dinosaurs: Giraffatitan brancai (previously Brachiosaurus) as 23200 kg
Mutation-aware fault prediction
We introduce mutation-aware fault prediction, which leverages additional guidance from metrics constructed in terms of mutants and the test cases that cover and detect them. We report the results of 12 sets of experiments, applying 4 di↵erent predictive modelling techniques to 3 large real world systems (both open and closed source). The results show that our proposal can significantly (p 0.05) improve fault prediction performance. Moreover, mutation based metrics lie in the top 5% most frequently relied upon fault predictors in 10 of the 12 sets of experiments, and provide the majority of the top ten fault predictors in 9 of the 12 sets of experiments.http://www0.cs.ucl.ac.uk/staff/F.Sarro/resource/papers/ISSTA2016-Bowesetal.pd
- …