66 research outputs found

    Pathophysiological Mechanisms Involved in Overactive Bladder/Detrusor Overactivity

    Get PDF

    Purinergic receptor mediated calcium signalling in urothelial cells

    Get PDF
    Non-neuronal ATP released from the urothelium in response to bladder stretch is a key modulator of bladder mechanosensation. Whilst non-neuronal ATP acts on the underlying bladder afferent nerves to facilitate sensation, there is also the potential for ATP to act in an autocrine manner, modulating urothelial cell function. The aim of this study was to systematically characterise the functional response of primary mouse urothelial cells (PMUCs) to ATP. PMUCs isolated from male mice (14-16 weeks) were used for live-cell fluorescent calcium imaging and qRT-PCR to determine the expression profile of P2X and P2Y receptors. The majority of PMUCs (74-92%) responded to ATP (1 μM-1 mM), as indicted by an increase in intracellular calcium (iCa2+). PMUCs exhibited dose-dependent responses to ATP (10 nM-1 mM) in both calcium containing (2 mM, EC50 = 3.49 ± 0.77 μM) or calcium free (0 mM, EC50 = 9.5 ± 1.5 μM) buffers. However, maximum iCa2+ responses to ATP were significantly attenuated upon repetitive applications in calcium containing but not in calcium free buffer. qRT-PCR revealed expression of P2X1-6, and P2Y1-2, P2Y4, P2Y6, P2Y11-14, but not P2X7 in PMUCs. These findings suggest the major component of ATP induced increases in iCa2+ are mediated via the liberation of calcium from intracellular stores, implicating functional P2Y receptors that are ubiquitously expressed on PMUCs.Russell Chess-Williams, Donna J. Sellers, Stuart M. Brierley, David Grundy, Luke Grund

    α<sub>1L</sub>-adrenoceptors mediate contraction of human erectile tissue

    Get PDF
    α1-adrenoceptor antagonists can impact upon sexual function and have potential in the treatment of erectile dysfunction. Human erectile tissue contains predominantly α1A-adrenoceptors, and here we examined whether contractions of this tissue are mediated by the functional phenotype, the α1L-adrenoceptor. Functional experiments using subtype selective agonists and antagonists, along with radioligand ([3H]tamsulosin) binding assays, were used to determine the α1-adrenoceptor population. A61603, a α1A-adrenoceptor agonist, was a full agonist with a potency 21-fold greater than that of noradrenaline. The α1A- and α1D-adrenoceptor antagonist tamsulosin antagonized noradrenaline responses with high affinity (pKD = 9.7 ± 0.3), whilst BMY7378 (100 nM) (α1D-adrenoceptor antagonist) failed to antagonize responses. In contrast, relatively low affinity estimates were obtained for both prazosin (pKD = 8.2 ± 0.1) and RS17053 (pKD = 6.9 ± 0.2), antagonists which discriminate between the α1A- and α1L-adrenoceptors. [3H]Tamsulosin bound with high affinity to the receptors of human erectile tissue (pKD = 10.3 ± 0.1) with a receptor density of 28.1 ± 1.4 fmol mg−1 protein. Prazosin displacement of [3H]tamsulosin binding revealed a single homogenous population of binding sites with a relatively low affinity for prazosin (pKi = 8.9). Taken together these data confirm that the receptor mediating contraction in human erectile tissue has the pharmacological properties of the α1L-adrenoceptor. Keywords: Erectile tissue, α1-adrenoceptor subtypes, α1L-adrenoceptor, Tamsulosin, Prazosi

    Partial recovery of voiding function in female mice following repeated psychological stress exposure

    Get PDF
    Psychological stress causes bladder dysfunction in humans and in rodent models, with increased urinary frequency and altered contractile responses evident following repeated environmental stress exposure. However, whether these changes persist after removal of the stressor is unknown, and the aim of this study was to determine if stress-induced changes in voiding behaviour and bladder function recover following removal of the stressor. Adult female mice were allocated to three groups: Unstressed, Stressed or Stressed + Recovery. Animals in the stressed groups were exposed to water avoidance stress for 1h/day for 10-days, with unstressed animals age-matched and housed under normal conditions. For recovery studies, animals were housed without stress exposure for an additional 10-days. Voiding behaviour was assessed periodically and animals sacrificed on day 10 (Unstressed and Stressed) or day 20 (Unstressed and Stressed + Recovery). Isolated whole bladder studies were used to assess compliance, urothelial mediator release and contractile responses. Exposure to stress increased plasma corticosterone levels almost three-fold (P<0.05) but this returned to baseline during the recovery period. Contractile responses of the bladder to carbachol and KCl were also increased following stress, and again fully recovered after a 10-day stress-free period. In contrast, stress increased urinary frequency four-fold (P<0.001), but this did not return fully to baseline during the recovery period. Bladder compliance was unchanged by stress; however, it was increased in the stressed + recovery group (P<0.05). Thus, following a stress-free period there is partial recovery of voiding behaviour, with an increase in bladder compliance possibly contributing to the compensatory mechanisms

    Psychological stress induced bladder overactivity in female mice is associated with enhanced afferent nerve activity

    Get PDF
    Abstract Psychological stress has been linked to the development and exacerbation of overactive bladder symptoms, as well as afferent sensitisation in other organ systems. Therefore, we aimed to investigate the effects of water avoidance stress on bladder afferent nerve activity in response to bladder filling and pharmaceutical stimulation with carbachol and ATP in mice. Adult female C57BL/6J mice were exposed to either water avoidance stress (WAS) for 1 h/day for 10 days or normal housing conditions. Voiding behaviour was measured before starting and 24-h after final stress exposure and then animals were euthanised to measure afferent nerve activity in association with bladder compliance, spontaneous phasic activity, contractile responses, as well as release of urothelial mediators. WAS caused increased urinary frequency without affecting urine production. The afferent nerve activity at low bladder pressures (4–7 mmHg), relevant to normal physiological filling, was significantly increased after stress. Both low and high threshold nerves demonstrated enhanced activity at physiological bladder pressures. Urothelial ATP and acetylcholine release and bladder compliance were unaffected by stress as was the detrusor response to ATP (1 mM) and carbachol (1 µM). WAS caused enhanced activity of individual afferent nerve fibres in response bladder distension. The enhanced activity was seen in both low and high threshold nerves suggesting that stressed animals may experience enhanced bladder filling sensations at lower bladder volumes as well as increased pain sensations, both potentially contributing to the increased urinary frequency seen after stress

    Natural products for the treatment of urinary incontinence

    Get PDF
    This review summarises the material covered during a workshop entitled “Natural Products as Treatments for Urinary Incontinence” that was presented at the online ICS (Melbourne) annual conference held in 2021. The clinical and scientific evidence of the effectiveness of naturally sourced treatments such as traditional Chinese medicines, phytoestrogens and saw palmetto for lower urinary tract symptoms are discussed, and also the use of cranberry and D-mannose for the treatment of bacterial infections of the urinary tract. The workshop and this review finish with a look towards the future and a discussion of potential treatments to repair the barrier function of the urothelium, an action that may be useful in conditions such as interstitial cystitis/bladder pain syndrome
    corecore