143 research outputs found

    The Founding of The University of Melbourne, 1852-1855

    Get PDF
    In part this paper is about ideas, especially those held by some men in nineteenth-century Melbourne who set about establishing a university. They had carried a set of ideas about what a university should be with them as they journeyed across the world, some of them in search of a promised land. They found that turning these ideas into reality was complex and disappointing, but their struggle sheds light on the social, political, and educational life of Antipodean society

    The Liberal Playground: Susan Isaacs, Psychoanalysis and Progressive Education in the Interwar Era

    Get PDF
    The Cambridge Malting House, an experimental school, serves here as a case study for investigating the tensions within 1920s liberal elites between their desire to abandon some Victorian and Edwardian sets of values in favour of more democratic ones, and at the same time their insistence on preserving themselves as an integral part of the English upper class. Susan Isaacs, the manager of the Malting House, provided the parents – some of whom were the most famous scientists and intellectuals of their age – with an opportunity to fulfil their ‘fantasy’ of bringing up children in total freedom. In retrospect, however, she deeply criticized those from their milieu for not fully understanding the real socio-cultural implications of their ideological decision to make independence and freedom the core values in their children’s education. Thus, 1920s progressive education is a paradigmatic case study of the cultural and ideological inner contradictions within liberal thought in the interwar era. The article also shows how psychoanalysis – which attracted many progressive educators – played a crucial role in providing liberals of all sorts with a new language to articulate their political visions, but, at the same time, explored the limits of the liberal discourse as a whole

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    The additional value of TGFβ1 and IL-7 to predict the course of prostate cancer progression

    Get PDF
    Background: Given the fact that prostate cancer incidence will increase in the coming years, new prognostic biomarkers are needed with regard to the biological aggressiveness of the prostate cancer diagnosed. Since cytokines have been associated with the biology of cancer and its prognosis, we determined whether transforming growth factor beta 1 (TGFβ1), interleukin-7 (IL-7) receptor and IL-7 levels add additional prognostic information with regard to prostate cancer

    The search for the ideal biocatalyst

    Get PDF
    While the use of enzymes as biocatalysts to assist in the industrial manufacture of fine chemicals and pharmaceuticals has enormous potential, application is frequently limited by evolution-led catalyst traits. The advent of designer biocatalysts, produced by informed selection and mutation through recombinant DNA technology, enables production of process-compatible enzymes. However, to fully realize the potential of designer enzymes in industrial applications, it will be necessary to tailor catalyst properties so that they are optimal not only for a given reaction but also in the context of the industrial process in which the enzyme is applied

    A strategy to discover new organizers identifies a putative heart organizer

    Get PDF
    Organizers are regions of the embryo that can both induce new fates and impart pattern on other regions. So far, surprisingly few organizers have been discovered, considering the number of patterned tissue types generated during development. This may be because their discovery has relied on transplantation and ablation experiments. Here we describe a new approach, using chick embryos, to discover organizers based on a common gene expression signature, and use it to uncover the anterior intestinal portal (AIP) endoderm as a putative heart organizer. We show that the AIP can induce cardiac identity from non-cardiac mesoderm and that it can pattern this by specifying ventricular and suppressing atrial regional identity. We also uncover some of the signals responsible. The method holds promise as a tool to discover other novel organizers acting during development

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Host shifts and molecular evolution of H7 avian influenza virus hemagglutinin

    Get PDF
    Evolutionary consequences of host shifts represent a challenge to identify the mechanisms involved in the emergence of influenza A (IA) viruses. In this study we focused on the evolutionary history of H7 IA virus in wild and domestic birds, with a particular emphasis on host shifts consequences on the molecular evolution of the hemagglutinin (HA) gene. Based on a dataset of 414 HA nucleotide sequences, we performed an extensive phylogeographic analysis in order to identify the overall genetic structure of H7 IA viruses. We then identified host shift events and investigated viral population dynamics in wild and domestic birds, independently. Finally, we estimated changes in nucleotide substitution rates and tested for positive selection in the HA gene. A strong association between the geographic origin and the genetic structure was observed, with four main clades including viruses isolated in North America, South America, Australia and Eurasia-Africa. We identified ten potential events of virus introduction from wild to domestic birds, but little evidence for spillover of viruses from poultry to wild waterbirds. Several sites involved in host specificity (addition of a glycosylation site in the receptor binding domain) and virulence (insertion of amino acids in the cleavage site) were found to be positively selected in HA nucleotide sequences, in genetically unrelated lineages, suggesting parallel evolution for the HA gene of IA viruses in domestic birds. These results highlight that evolutionary consequences of bird host shifts would need to be further studied to understand the ecological and molecular mechanisms involved in the emergence of domestic bird-adapted viruses
    corecore