716 research outputs found
Myelin Basic Protein-Induced Production of Tumor Necrosis Factor-α and Interleukin-6, and Presentation of the Immunodominant Peptide MBP85-99 by B Cells from Patients with Relapsing-Remitting Multiple Sclerosis
B cells are involved in driving relapsing-remitting multiple sclerosis (RRMS), as demonstrated by the positive effect of therapeutic B-cell depletion. Aside from producing antibodies, B cells are efficient antigen-presenting and cytokine-secreting cells. Diverse polyclonal stimuli have been used to study cytokine production by B cells, but here we used the physiologically relevant self-antigen myelin basic protein (MBP) to stimulate B cells from untreated patients with RRMS and healthy donors. Moreover, we took advantage of the unique ability of the monoclonal antibody MK16 to recognize the immunodominant peptide MBP85-99 presented on HLA-DR15, and used it as a probe to directly study B-cell presentation of self-antigenic peptide. The proportions of B cells producing TNF-α or IL-6 after stimulation with MBP were higher in RRMS patients than in healthy donors, indicating a pro-inflammatory profile for self-reactive patient B cells. In contrast, polyclonal stimulation with PMA + ionomycin and MBP revealed no difference in cytokine profile between B cells from RRMS patients and healthy donors. Expanded disability status scale (EDSS) as well as multiple sclerosis severity score (MSSS) correlated with reduced ability of B cells to produce IL-10 after stimulation with MBP, indicative of diminished B-cell immune regulatory function in patients with the most severe disease. Moreover, EDSS correlated positively with the frequencies of TNF-α, IL-6 and IL-10 producing B cells after polyclonal stimulation. Patient-derived, IL-10-producing B cells presented MBP85-99 poorly, as did IL-6-producing B cells, particulary in the healthy donor group. B cells from MS patients thus present antigen to T cells in a pro-inflammatory context. These findings contribute to understanding the therapeutic effects of B-cell depletion in human autoimmune diseases, including MS
Progression and CSF Inflammation after Eradication of Oligoclonal Bands in an MS Patient Treated with Allogeneic Hematopoietic Cell Transplantation for Follicular Lymphoma
Background: Allogeneic hematopoietic cell transplantation (allo-HCT) has been proposed as treatment for multiple sclerosis (MS) and other autoimmune diseases. Aims: To describe the effects of allo-HCT on the course of MS in a 49-year-old woman with longstanding progressive MS who was treated with allo-HCT for follicular lymphoma. Methods: Non-myeloablative conditioning allo-HCT, examination for IgG oligoclonal bands and measurement of CXCL13 and matrix metalloproteinase-9 (MMP-9) concentration in the cerebrospinal fluid (CSF). Results: Despite the disappearance of oligoclonal bands in CSF, disease progression and CSF inflammation was observed. Conclusions: We hypothesize that CXCL13 and MMP-9 detected in CSF may reflect ongoing, pathogenic immune activation even after the eradication of intrathecal IgG synthesis. This suggests that progressive MS may depend more on innate than on adaptive immune activation
IL-6, IL-12, and IL-23 STAT-Pathway Genetic Risk and Responsiveness of Lymphocytes in Patients with Multiple Sclerosis
Multiple sclerosis (MS) is an immune-mediated demyelinating disease characterized by central nervous system (CNS) lymphocyte infiltration, abundant production of pro-inflammatory cytokines, and inappropriate activation of Th1 and Th17 cells, B cells, and innate immune cells. The etiology of MS is complex, and genetic factors contribute to disease susceptibility. Genome-wide association studies (GWAS) have revealed numerous MS-risk alleles in the IL-6/STAT3, IL-12/STAT4, and IL-23/STAT3-pathways implicated in the differentiation of Th1 and Th17 cells. In this study, we investigated the signaling properties of these pathways in T, B, and NK cells from patients with relapsing-remitting MS (RRMS) and healthy controls, and assessed the genetic contribution to the activity of the pathways. This revealed a great variability in the level of STAT-pathway molecules and STAT activation between the cell types investigated. We also found a strong donor variation in IL-6, IL-12, and IL-23 responsiveness of primed CD4+ T cells. This variation could not be explained by a single MS-risk variant in a pathway component, or by an accumulation of multiple STAT-pathway MS-risk SNPs. The data of this study suggests that other factors in cohesion with the genetic background contribute to the responsiveness of the IL-6/STAT3, IL-12/STAT4, and IL-23/STAT3-pathways
Specific Patterns of Immune Cell Dynamics May Explain the Early Onset and Prolonged Efficacy of Cladribine Tablets: A MAGNIFY-MS Substudy
Cladribina; Cèl·lules immunità riesCladribina; Células inmunitariasCladribine; Immune cellsBackground and Objectives Cladribine tablets cause a reduction in lymphocytes with a predominant effect on B-cell and T-cell counts. The MAGNIFY-MS substudy reports the dynamic changes on multiple peripheral blood mononuclear cell (PBMC) subtypes and immunoglobulin (Ig) levels over 12 months after the first course of cladribine tablets in patients with highly active relapsing multiple sclerosis (MS).
Methods Immunophenotyping was performed at baseline (predose) and at the end of months 1, 2, 3, 6, and 12 after initiating treatment with cladribine tablets. Assessments included lymphocyte subtype counts of CD19+ B cells, CD4+ and CD8+ T cells, CD16+ natural killer cells, plasmablasts, and Igs. Immune cell subtypes were analyzed by flow cytometry, and serum IgG and IgM were analyzed by nephelometric assay. Absolute cell counts and percentage change from baseline were assessed.
Results The full analysis set included 57 patients. Rapid reductions in median CD19+, CD20+, memory, activated, and naive B-cell counts were detected, reaching nadir by month 2. Thereafter, total CD19+, CD20+, and naive B-cell counts subsequently reconstituted, but memory B cells remained reduced by 93%–87% for the remainder of the study. The decrease in plasmablasts was slower, reaching nadir at month 3. Decrease in T-cell subtypes was also slower and more moderate compared with B-cell subtypes, reaching nadir between months 3 and 6. IgG and IgM levels remained within the normal range over the 12-month study period.
Discussion Cladribine tablets induce a specific pattern of early and sustained PBMC subtype dynamics in the absence of relevant Ig changes: While total B cells were reduced dramatically, T cells were affected significantly less. Naive B cells recovered toward baseline, naive CD4 and CD8 T cells did not, and memory B cells remained reduced. The results help to explain the unique immune depletion and repopulation architecture regarding onset of action and durability of effects of cladribine tablets while largely maintaining immune competence.This work was supported by the healthcare business of Merck KGaA, Darmstadt, Germany (CrossRef Funder ID: 10.13039/100009945)
Sustained effects on immune cell subsets and autoreactivity in multiple sclerosis patients treated with oral cladribine
IntroductionCladribine tablet therapy is an efficacious treatment for multiple sclerosis (MS). Recently, we showed that one year after the initiation of cladribine treatment, T and B cell crosstalk was impaired, reducing potentially pathogenic effector functions along with a specific reduction of autoreactivity to RAS guanyl releasing protein 2 (RASGRP2). In the present study we conducted a longitudinal analysis of the effect of cladribine treatment in patients with RRMS, focusing on the extent to which the effects observed on T and B cell subsets and autoreactivity after one year of treatment are maintained, modulated, or amplified during the second year of treatment.MethodsIn this case-control exploratory study, frequencies and absolute counts of peripheral T and B cell subsets and B cell cytokine production from untreated patients with relapsing-remitting MS (RRMS) and patients treated with cladribine for 52 (W52), 60 (W60), 72 (W72) and 96 (W96) weeks, were measured using flow cytometry. Autoreactivity was assessed using a FluoroSpot assay.ResultsWe found a substantial reduction in circulating memory B cells and proinflammatory B cell responses. Furthermore, we observed reduced T cell responses to autoantigens possibly presented by B cells (RASGRP2 and a-B crystallin (CRYAB)) at W52 and W96 and a further reduction in responses to the myelin antigens myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) after 96 weeks.ConclusionWe conclude that the effects of cladribine observed after year one are maintained and, for some effects, even increased two years after the initiation of a full course of treatment with cladribine tablets
The association of selected multiple sclerosis symptoms with disability and quality of life:a large Danish self-report survey
Abstract Background People with multiple sclerosis (MS) experience a wide range of unpredictable and variable symptoms. The symptomatology of MS has previously been reported in large sample registry studies; however, some symptoms may be underreported in registries based on clinician-reported outcomes and how the symptoms are associated with quality of life (QoL) are often not addressed. The aim of this study was to comprehensively evaluate the frequency of selected MS related symptoms and their associations with disability and QoL in a large self-report study. Methods We conducted a cross-sectional questionnaire survey among all patients at the Danish Multiple Sclerosis Center, Copenhagen University Hospital, Denmark. The questionnaire included information on clinical and sociodemographic characteristics, descriptors of QoL and disability, as well as prevalence and severity of the following MS symptoms: impaired ambulation, spasticity, chronic pain, fatigue, bowel and bladder dysfunction, and sleep disturbances. Results Questionnaires were returned by 2244/3606 (62%). Participants without MS diagnosis or incomplete questionnaires were excluded, n = 235. A total of 2009 questionnaires were included for analysis (mean age 49.4 years; mean disease duration 11.7 years; and 69% were women). The most frequently reported symptoms were bowel and bladder dysfunction (74%), fatigue (66%), sleep disturbances (59%), spasticity (51%) and impaired ambulation (38%). With exception of fatigue and sleep disturbances, all other symptoms increased in severity with higher disability level. Invisible symptoms (also referred to as hidden symptoms) such as fatigue, pain and sleep disturbances had the strongest associations with the overall QoL. Conclusion We found invisible symptoms highly prevalent, even at mild disability levels. Fatigue, pain and sleep disturbances had the strongest associations with the overall QoL and were more frequently reported in our study compared with previous registry-based studies. These symptoms may be underreported in registries based on clinician reported outcomes, which emphasizes the importance of including standardized patient reported outcomes in nationwide registries to better understand the impact of the symptom burden in MS
Cellular sources of dysregulated cytokines in relapsing-remitting multiple sclerosis
BACKGROUND: Numerous cytokines are implicated in the immunopathogenesis of multiple sclerosis (MS), but studies are often limited to whole blood (WB) or peripheral blood mononuclear cells (PBMCs), thereby omitting important information about the cellular origin of the cytokines. Knowledge about the relation between blood and cerebrospinal fluid (CSF) cell expression of cytokines and the cellular source of CSF cytokines is even more scarce. METHODS: We studied gene expression of a broad panel of cytokines in WB from relapsing-remitting multiple sclerosis (RRMS) patients in remission and healthy controls (HCs). Subsequently we determined the gene expression of the dysregulated cytokines in isolated PBMC subsets (CD4(+), CD8(+)T-cells, NK-cells, B-cells, monocytes and dendritic cells) from RRMS patients and HCs and in CSF-cells from RRMS patients in clinical relapse and non-inflammatory neurological controls (NIND). RESULTS: RRMS patients had increased expression of IFN-gamma (IFNG), interleukin (IL) 1-beta (IL1B), IL7, IL10, IL12A, IL15, IL23, IL27, lymphotoxin-alpha (LTA) and lymphotoxin-beta (LTB) in WB. In PBMC subsets the main sources of pro-inflammatory cytokines were T- and B-cells, whereas monocytes were the most prominent source of immunoregulatory cytokines. In CSF-cells, RRMS patients had increased expression of IFNG and CD19 and decreased expression of IL10 and CD14 compared to NINDs. CD19 expression correlated with expression of IFNG, IL7, IL12A, IL15 and LTA whereas CD14 expression correlated with IL10 expression. CONCLUSIONS: Using a systematic approach, we show that expression of pro-inflammatory cytokines in peripheral blood primarily originates from T- and B-cells, with an important exception of IFNG which is most strongly expressed by NK-cells. In CSF-cell studies, B-cells appear to be enriched in RRMS and associated with expression of pro-inflammatory cytokines; contrarily, monocytes are relatively scarce in CSF from RRMS patients and are associated with IL10 expression. Thus, our findings suggest a pathogenetic role of B-cells and an immunoregulatory role of monocytes in RRMS
Systemic frequencies of T helper 1 and T helper 17 cells in patients with age-related macular degeneration: A case-control study
Age-related macular degeneration (AMD) is a degenerative disease of the retina and a leading cause of irreversible vision loss. We investigated the systemic differences in the frequency of T helper (Th) 1 and Th17 cells in patients with non-exudative and exudative AMD and compared to age-matched controls. Flow cytometry was used to determine the systemic frequency of Th1 (CD4+CXCR3+IL12RB2+) and Th17 (CD4+CCR6+IL23R+) cells, and percentage of CD4+ T-cells expressing CXCR3, IL12RB2, CCR6, IL23R, and co-expressing CXCR3 and CCR6. The frequency of Th1 cells and CXCR3+ CD4+ T-cells was lower in patients with exudative AMD. A significant age-dependent decrement in Th1 was observed in controls, but not in non-exudative or exudative AMD. This may be related to the CXCR3+ CD4+ T-cells, which showed similar pattern in controls, but not in non-exudative or exudative AMD. No significant group differences were observed for the frequency of Th17 cells. Correlation networks found several differences between controls and AMD. These data suggests the involvement of the adaptive immune system in AMD and supports the notion of AMD as a systemic disease. Our observations warrant further investigation into the role of the adaptive immune system in the pathogenesis of AMD
- …